Short-term stability of a microcell optical reference based on the Rb atom two-photon transition at 778 nm

被引:3
作者
Callejo, Martin [1 ]
Mursa, Andrei [1 ]
Vicarini, Remy [1 ]
Klinger, Emmanuel [1 ]
Tanguy, Quentin [1 ]
Millo, Jacques [1 ]
Passilly, Nicolas [1 ]
Boudot, Rodolphe [1 ]
机构
[1] Univ Franche Comte, CNRS, ENSMM, FEMTO ST, 26 Chemin Epitaphe, F-25030 Besancon, France
关键词
CS D-1 LINE; FREQUENCY REFERENCE; VAPOR MICROCELL; SPECTROSCOPY; NOISE; CELLS; CHIP;
D O I
10.1364/JOSAB.533904
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report on the development and short-term stability characterization of an optical frequency reference based on the spectroscopy of the rubidium two-photon transition at 778 nm in a microfabricated vapor cell. When compared against a 778 nm reference signal extracted from a frequency-doubled cavity-stabilized telecom laser, the short-term stability of the microcell frequency standard is 3.5 x 10-13 tau - 1 / 2 until 200 s, in good agreement with a phase noise level of + 43 dBrad2/Hz at 1 Hz offset frequency. The two main contributions to the short-term stability of the microcell reference are currently the photon shot noise and the intermodulation effect induced by the laser frequency noise. Retaining a relevant margin of progress, these results show the interest of this spectroscopic approach for the demonstration of high-stability miniaturized optical vapor cell clocks. Such clocks are poised to be highly beneficial for applications in navigation, communications, and metrology. (c) 2024 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
引用
收藏
页码:151 / 159
页数:9
相关论文
共 65 条
[1]   Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL) [J].
Affolderbach, C ;
Nagel, A ;
Knappe, S ;
Jung, C ;
Wiedenmann, D ;
Wynands, R .
APPLIED PHYSICS B-LASERS AND OPTICS, 2000, 70 (03) :407-413
[2]   Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks [J].
Al-Samaneh, A. ;
Sanayeh, M. Bou ;
Miah, M. J. ;
Schwarz, W. ;
Wahl, D. ;
Kern, A. ;
Michalzik, R. .
APPLIED PHYSICS LETTERS, 2012, 101 (17)
[3]  
ALCOCK CB, 1984, CAN METALL QUART, V23, P309
[4]   Coherent population trapping in laser spectroscopy [J].
Arimondo, E .
PROGRESS IN OPTICS, VOL XXXV, 1996, 35 :257-354
[5]  
AUDOIN C, 1991, IEEE T INSTRUM MEAS, V40, P121, DOI 10.1109/TIM.1990.1032896
[6]   μPOP Clock: A Microcell Atomic Clock Based on a Double-Resonance Ramsey Scheme [J].
Batori, Etienne ;
Affolderbach, Christoph ;
Pellaton, Matthieu ;
Gruet, Florian ;
Violetti, Maddalena ;
Su, Yuanyan ;
Skrivervik, Anja K. ;
Mileti, Gaetano .
PHYSICAL REVIEW APPLIED, 2022, 18 (05)
[7]   Wafer-level fabrication of alkali vapor cells using in-situ atomic deposition [J].
Bopp, D. G. ;
Maurice, V. M. ;
Kitching, J. E. .
JOURNAL OF PHYSICS-PHOTONICS, 2021, 3 (01)
[8]   Enhanced observation time of magneto-optical traps using micro-machined non-evaporable getter pumps [J].
Boudot, Rodolphe ;
McGilligan, James P. ;
Moore, Kaitlin R. ;
Maurice, Vincent ;
Martinez, Gabriela D. ;
Hansen, Azure ;
de Clercq, Emeric ;
Kitching, John .
SCIENTIFIC REPORTS, 2020, 10 (01)
[9]   Dual-frequency sub-Doppler spectroscopy: Extended theoretical model and microcell-based experiments [J].
Brazhnikov, Denis ;
Petersen, Michael ;
Coget, Gregoire ;
Passilly, Nicolas ;
Maurice, Vincent ;
Gorecki, Christophe ;
Boudot, Rodolphe .
PHYSICAL REVIEW A, 2019, 99 (06)
[10]   Reduction of helium permeation in microfabricated cells using aluminosilicate glass substrates and Al2O3 coatings [J].
Carle, C. ;
Keshavarzi, S. ;
Mursa, A. ;
Karvinen, P. ;
Chutani, R. ;
Bargiel, S. ;
Queste, S. ;
Vicarini, R. ;
Abbe, P. ;
Hafiz, M. Abdel ;
Maurice, V. ;
Boudot, R. ;
Passilly, N. .
JOURNAL OF APPLIED PHYSICS, 2023, 133 (21)