PERIODIC GRAVITY-CAPILLARY ROLL WAVE SOLUTIONS TO THE INCLINED VISCOUS SHALLOW WATER EQUATIONS IN TWO DIMENSIONS

被引:0
作者
Stevenson, Noah [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
roll waves; traveling waves; viscous shallow water equations; bifurcation theory; SAINT-VENANT; STABILITY; DERIVATION; TURBULENT; EXISTENCE; EVOLUTION; MODEL;
D O I
10.1137/24M1674406
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study periodic, two-dimensional, gravity-capillary traveling wave solutions to a viscous shallow water system posed on an inclined plane. While thinking of the Reynolds and Bond numbers as fixed and finite, we vary the speed of the traveling frame and the degree of the incline and identify a set of the latter two parameters that classifies from which combinations nontrivial and small amplitude solution curves originate. Our principal technical tools are a combination of the implicit function theorem and a local multiparameter bifurcation theorem. To the best of the author's knowledge, this paper constitutes the first construction and mathematical study of properly two-dimensional examples of viscous roll waves.
引用
收藏
页码:1342 / 1369
页数:28
相关论文
共 46 条
[1]   Dynamics of roll waves [J].
Balmforth, NJ ;
Mandre, S .
JOURNAL OF FLUID MECHANICS, 2004, 514 :1-33
[2]   Stability of Viscous St. Venant Roll Waves: From Onset to Infinite Froude Number Limit [J].
Barker, Blake ;
Johnson, Mathew A. ;
Noble, Pascal ;
Rodrigues, L. Miguel ;
Zumbrun, Kevin .
JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (01) :285-342
[3]   Metastability of solitary roll wave solutions of the St. Venant equations with viscosity [J].
Barker, Blake ;
Johnson, Mathew A. ;
Rodrigues, L. Miguel ;
Zumbrun, Kevin .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (16) :1289-1310
[4]   A new model of Saint Venant and Savage-Hutter type for gravity driven shallow water flows [J].
Bouchut, F ;
Mangeney-Castelnau, A ;
Perthame, B ;
Vilotte, JP .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (06) :531-536
[5]  
Bouchut F., 2004, Communications in Mathematical Sciences, V2, P359, DOI DOI 10.4310/CMS.2004.V2.N3.A2
[6]  
Boutounet M, 2008, COMMUN MATH SCI, V6, P29
[7]  
Bresch D, 2009, HBK DIFF EQUAT EVOL, V5, P1, DOI 10.1016/S1874-5717(08)00208-9
[8]  
Brock R.R., 1969, J. Hydraul. Div., V95, P1401, DOI 10.1061/JYCEAJ.0002132
[9]   Slowly Traveling Gravity Waves for Darcy Flow: Existence and Stability of Large Waves [J].
Brownfield, John ;
Nguyen, Huy Q. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (10)
[10]   Coherent structures, self-similarity, and universal roll wave coarsening dynamics [J].
Chang, HC ;
Demekhin, EA ;
Kalaidin, E .
PHYSICS OF FLUIDS, 2000, 12 (09) :2268-2278