Productive CHO cell lines selection in biopharm process development through machine learning on metabolomic dynamics

被引:1
作者
Barberi, Gianmarco [1 ]
Benedetti, Antonio [2 ]
Diaz-Fernandez, Paloma [3 ]
Sevin, Daniel C. [4 ]
Vappiani, Johanna [4 ]
Finka, Gary [3 ]
Bezzo, Fabrizio [1 ]
Facco, Pierantonio [1 ]
机构
[1] Univ Padua, Dept Ind Engn, CAPE Lab Comp Aided Proc Engn Lab, Via Marzolo 9, I-35131 Padua, Italy
[2] GlaxoSmithKline R&D, Proc Engn & Analyt Prod Dev & Supply, Stevenage, England
[3] GlaxoSmithKline R&D, Biopharm Proc Res, Biopharm Prod Dev & Supply, Stevenage, England
[4] GlaxoSmithKline R&D, Cellzome GmbH, Heidelberg, Germany
关键词
bioprocesses development; CHO; machine learning; metabolomics; multivariate modeling; productivity; PARTIAL LEAST-SQUARES; HAMSTER OVARY CELLS; HIGH-THROUGHPUT; REGRESSION; IDENTIFICATION; STRATEGIES; CULTURES; MODELS;
D O I
10.1002/aic.18602
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The identification of highly productive cell lines is crucial in the development of bioprocesses for the production of therapeutic monoclonal antibodies (mAbs). Metabolomics data provide valuable information for cell line selection and allow the study of the relationship with mAb productivity and product quality attributes. We propose a novel robust machine learning procedure which, exploiting dynamic metabolomic data from the Ambr (R) 15 scale, supports the selection of highly productive cell lines during biopharmaceutical bioprocess development and scale-up. The metabolomic profiles dynamics allows to identify the cell lines with high productivity, already in the early stages of experimentation, and the biomarkers that are the most related to mAb productivity, finding at the same time the key metabolic pathways for discriminating mAb productivity. Specifically, tricarboxylic acid cycle pathways are predominant in the early stages of the cultivation, while amino and nucleotide sugar pathways influence in the late stages of the culture.
引用
收藏
页数:15
相关论文
共 55 条
  • [31] Multi-way partial least squares in monitoring batch processes
    Nomikos, P
    MacGregor, JF
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1995, 30 (01) : 97 - 108
  • [32] MONITORING BATCH PROCESSES USING MULTIWAY PRINCIPAL COMPONENT ANALYSIS
    NOMIKOS, P
    MACGREGOR, JF
    [J]. AICHE JOURNAL, 1994, 40 (08) : 1361 - 1375
  • [33] High-Antibody-Producing Chinese Hamster Ovary Cells Up-Regulate Intracellular Protein Transport and Glutathione Synthesis
    Orellana, Camila A.
    Marcellin, Esteban
    Schulz, Benjamin L.
    Nouwens, Amanda S.
    Gray, Peter P.
    Nielsen, Lars K.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2015, 14 (02) : 609 - 618
  • [34] Impact of CHO Metabolism on Cell Growth and Protein Production: An Overview of Toxic and Inhibiting Metabolites and Nutrients
    Pereira, Sara
    Kildegaard, Helene Faustrup
    Andersen, Mikael Rordam
    [J]. BIOTECHNOLOGY JOURNAL, 2018, 13 (03)
  • [35] Identifying drug targets in tissues and whole blood with thermal-shift profiling
    Perrin, Jessica
    Werner, Thilo
    Kurzawa, Nils
    Rutkowska, Anna
    Childs, Dorothee D.
    Kalxdorf, Mathias
    Poeckel, Daniel
    Stonehouse, Eugenia
    Strohmer, Katrin
    Heller, Bianca
    Thomson, Douglas W.
    Krause, Jana
    Becher, Isabelle
    Eberl, H. Christian
    Vappiani, Johanna
    Sevin, Daniel C.
    Rau, Christina E.
    Franken, Holger
    Huber, Wolfgang
    Faelth-Savitski, Maria
    Savitski, Mikhail M.
    Bantscheff, Marcus
    Bergamini, Giovanna
    [J]. NATURE BIOTECHNOLOGY, 2020, 38 (03) : 303 - +
  • [36] A Backward Variable Selection method for PLS regression (BVSPLS)
    Pierna, Juan Antonio Fernandez
    Abbas, Ouissam
    Baeten, Vincent
    Dardenne, Pierre
    [J]. ANALYTICA CHIMICA ACTA, 2009, 642 (1-2) : 89 - 93
  • [37] Fault detection properties of global, local and time evolving models for batch process monitoring
    Ramaker, HJ
    van Sprang, ENM
    Westerhuis, JA
    Smilde, AK
    [J]. JOURNAL OF PROCESS CONTROL, 2005, 15 (07) : 799 - 805
  • [38] High-throughput miniaturized bioreactors for cell culture process development: Reproducibility, scalability, and control
    Rameez, Shahid
    Mostafa, Sigma S.
    Miller, Christopher
    Shukla, Abhinav A.
    [J]. BIOTECHNOLOGY PROGRESS, 2014, 30 (03) : 718 - 727
  • [39] Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: History, key components, and optimization strategies
    Ritacco, Frank V.
    Wu, Yongqi
    Khetan, Anurag
    [J]. BIOTECHNOLOGY PROGRESS, 2018, 34 (06) : 1407 - 1426
  • [40] Analyzing Longitudinal Microbial Metabolomics Data
    Rubingh, Carina M.
    Bijlsma, Sabina
    Jellema, Renger H.
    Overkamp, Karin M.
    van der Werf, Mariet J.
    Smilde, Age K.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2009, 8 (09) : 4319 - 4327