Productive CHO cell lines selection in biopharm process development through machine learning on metabolomic dynamics

被引:1
作者
Barberi, Gianmarco [1 ]
Benedetti, Antonio [2 ]
Diaz-Fernandez, Paloma [3 ]
Sevin, Daniel C. [4 ]
Vappiani, Johanna [4 ]
Finka, Gary [3 ]
Bezzo, Fabrizio [1 ]
Facco, Pierantonio [1 ]
机构
[1] Univ Padua, Dept Ind Engn, CAPE Lab Comp Aided Proc Engn Lab, Via Marzolo 9, I-35131 Padua, Italy
[2] GlaxoSmithKline R&D, Proc Engn & Analyt Prod Dev & Supply, Stevenage, England
[3] GlaxoSmithKline R&D, Biopharm Proc Res, Biopharm Prod Dev & Supply, Stevenage, England
[4] GlaxoSmithKline R&D, Cellzome GmbH, Heidelberg, Germany
关键词
bioprocesses development; CHO; machine learning; metabolomics; multivariate modeling; productivity; PARTIAL LEAST-SQUARES; HAMSTER OVARY CELLS; HIGH-THROUGHPUT; REGRESSION; IDENTIFICATION; STRATEGIES; CULTURES; MODELS;
D O I
10.1002/aic.18602
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The identification of highly productive cell lines is crucial in the development of bioprocesses for the production of therapeutic monoclonal antibodies (mAbs). Metabolomics data provide valuable information for cell line selection and allow the study of the relationship with mAb productivity and product quality attributes. We propose a novel robust machine learning procedure which, exploiting dynamic metabolomic data from the Ambr (R) 15 scale, supports the selection of highly productive cell lines during biopharmaceutical bioprocess development and scale-up. The metabolomic profiles dynamics allows to identify the cell lines with high productivity, already in the early stages of experimentation, and the biomarkers that are the most related to mAb productivity, finding at the same time the key metabolic pathways for discriminating mAb productivity. Specifically, tricarboxylic acid cycle pathways are predominant in the early stages of the cultivation, while amino and nucleotide sugar pathways influence in the late stages of the culture.
引用
收藏
页数:15
相关论文
共 55 条
  • [1] Use of the bootstrap and permutation methods for a more robust variable importance in the projection metric for partial least squares regression
    Afanador, N. L.
    Tran, T. N.
    Buydens, L. M. C.
    [J]. ANALYTICA CHIMICA ACTA, 2013, 768 : 49 - 56
  • [2] Using Metabolomics to Identify Cell Line-Independent Indicators of Growth Inhibition for Chinese Hamster Ovary Cell-Based Bioprocesses
    Alden, Nicholas
    Raju, Ravali
    McElearney, Kyle
    Lambropoulos, James
    Kshirsagar, Rashmi
    Gilbert, Alan
    Lee, Kyongbum
    [J]. METABOLITES, 2020, 10 (05)
  • [3] Partial least squares for discrimination
    Barker, M
    Rayens, W
    [J]. JOURNAL OF CHEMOMETRICS, 2003, 17 (03) : 166 - 173
  • [4] Metabolomics profiling of extracellular metabolites in recombinant Chinese Hamster Ovary fed-batch culture
    Chong, William P. K.
    Goh, Lin Tang
    Reddy, Satty G.
    Yusufi, Faraaz N. K.
    Lee, Dong Yup
    Wong, Niki S. C.
    Heng, Chew Kiat
    Yap, Miranda G. S.
    Ho, Ying Swan
    [J]. RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2009, 23 (23) : 3763 - 3771
  • [5] LC-MS-based metabolic characterization of high monoclonal antibody-producing Chinese hamster ovary cells
    Chong, William Pooi Kat
    Thng, Shu Hui
    Hiu, Ai Ping
    Lee, Dong-Yup
    Chan, Eric Chun Yong
    Ho, Ying Swan
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2012, 109 (12) : 3103 - 3111
  • [6] Metabolomics for high-resolution monitoring of the cellular physiological state in cell culture engineering
    Chrysanthopoulos, Panagiotis K.
    Goudar, Chetan T.
    Klapa, Maria I.
    [J]. METABOLIC ENGINEERING, 2010, 12 (03) : 212 - 222
  • [7] Direct functional assessment of the composite phenotype through multivariate projection strategies
    Conesa, Ana
    Bro, Rasmus
    Garcia-Garcia, Francisco
    Prats, Jose Manuel
    Gotz, Stefan
    Kjeldahl, Karin
    Montaner, David
    Dopazo, Joaquin
    [J]. GENOMICS, 2008, 92 (06) : 373 - 383
  • [8] A theoretical estimate for nucleotide sugar demand towards Chinese Hamster Ovary cellular glycosylation
    del Val, Ioscani Jimenez
    Polizzi, Karen M.
    Kontoravdi, Cleo
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [9] Enhancement of production of protein biopharmaceuticals by mammalian cell cultures: the metabolomics perspective
    Dickson, Alan J.
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2014, 30 : 73 - 79
  • [10] A Multi-Omics Analysis of Recombinant Protein Production in Hek293 Cells
    Dietmair, Stefanie
    Hodson, Mark P.
    Quek, Lake-Ee
    Timmins, Nicholas E.
    Gray, Peter
    Nielsen, Lars K.
    [J]. PLOS ONE, 2012, 7 (08):