metaGE: Investigating genotype x environment interactions through GWAS meta-analysis

被引:2
作者
De Walsche, Annaig [1 ,2 ]
Vergne, Alexis [3 ]
Rincent, Renaud [1 ]
Roux, Fabrice [4 ]
Nicolas, Stephane [1 ]
Welcker, Claude [5 ]
Mezmouk, Sofiane [6 ]
Charcosset, Alain [1 ]
Mary-Huard, Tristan [1 ,2 ]
机构
[1] Univ Paris Saclay, Genet Quantitat & Evolut Le Moulon, INRAE, CNRS,AgroParisTech, Gif Sur Yvette, France
[2] Univ Paris Saclay, INRAE, AgroParisTech, MIA Paris Saclay, Palaiseau, France
[3] CEA, CEA Tech Grand Est, Metz, France
[4] Univ Toulouse, LIPME, INRAE, CNRS, Castanet Tolosan, France
[5] Univ Montpellier, Inst Agro, LEPSE, INRAE, Montpellier, France
[6] KWS SAAT SE & Co KGaA, Einbeck, Germany
关键词
QUANTITATIVE TRAIT LOCI; GENOME-WIDE ASSOCIATION; MIXED-MODEL ANALYSIS; LINKAGE DISEQUILIBRIUM; BY-ENVIRONMENT; HETEROGENEITY; POPULATIONS; STATISTICS; TESTS; YIELD;
D O I
10.1371/journal.pgen.1011553
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Elucidating the genetic components of plant genotype-by-environment interactions is of key importance in the context of increasing climatic instability, diversification of agricultural practices and pest pressure due to phytosanitary treatment limitations. The genotypic response to environmental stresses can be investigated through multi-environment trials (METs). However, genome-wide association studies (GWAS) of MET data are significantly more complex than that of single environments. In this context, we introduce metaGE, a flexible and computationally efficient meta-analysis approach for jointly analyzing single-environment GWAS of any MET experiment. The metaGE procedure accounts for the heterogeneity of quantitative trait loci (QTL) effects across the environmental conditions and allows the detection of QTL whose allelic effect variations are strongly correlated to environmental cofactors. We evaluated the performance of the proposed methodology and compared it to two competing procedures through simulations. We also applied metaGE to two emblematic examples: the detection of flowering QTLs whose effects are modulated by competition in Arabidopsis and the detection of yield QTLs impacted by drought stresses in maize. The procedure identified known and new QTLs, providing valuable insights into the genetic architecture of complex traits and QTL effects dependent on environmental stress conditions. The whole statistical approach is available as an R package.
引用
收藏
页数:26
相关论文
共 81 条
[1]   Genome wide association analyses to understand genetic basis of flowering and plant height under three levels of nitrogen application in Brassica juncea (L.) Czern & Coss [J].
Akhatar, Javed ;
Goyal, Anna ;
Kaur, Navneet ;
Atri, Chhaya ;
Mittal, Meenakshi ;
Singh, Mohini Prabha ;
Kaur, Rimaljeet ;
Rialch, Indu ;
Banga, Surinder S. .
SCIENTIFIC REPORTS, 2021, 11 (01)
[2]  
AlKhalifah Naser, 2018, BMC Res Notes, V11, P452, DOI [10.1186/s13104-018-3508-1, 10.1186/s13104-018-3508-1]
[3]   Bayesian multitrait kernel methods improve multienvironment genome-based prediction [J].
Antonio Montesinos-Lopez, Osval ;
Cricelio Montesinos-Lopez, Jose ;
Montesinos-Lopez, Abelardo ;
Manuel Ramirez-Alcaraz, Juan ;
Poland, Jesse ;
Singh, Ravi ;
Dreisigacker, Susanne ;
Crespo, Leonardo ;
Mondal, Sushismita ;
Govidan, Velu ;
Juliana, Philomin ;
Huerta Espino, Julio ;
Shrestha, Sandesh ;
Varshney, Rajeev K. ;
Crossa, Jose .
G3-GENES GENOMES GENETICS, 2022, 12 (02)
[4]   Genome-Wide Meta-Analysis of Joint Tests for Genetic and Gene-Environment Interaction Effects [J].
Aschard, Hugues ;
Hancock, Dana B. ;
London, Stephanie J. ;
Kraft, Peter .
HUMAN HEREDITY, 2010, 70 (04) :292-300
[5]   TESTS FOR CROSSOVER GENOTYPE-ENVIRONMENTAL INTERACTIONS [J].
BAKER, RJ .
CANADIAN JOURNAL OF PLANT SCIENCE, 1988, 68 (02) :405-410
[6]   Intraspecific variation of recombination rate in maize [J].
Bauer, Eva ;
Falque, Matthieu ;
Walter, Hildrun ;
Bauland, Cyril ;
Camisan, Christian ;
Campo, Laura ;
Meyer, Nina ;
Ranc, Nicolas ;
Rincent, Renaud ;
Schipprack, Wolfgang ;
Altmann, Thomas ;
Flament, Pascal ;
Melchinger, Albrecht E. ;
Menz, Monica ;
Moreno-Gonzalez, Jesus ;
Ouzunova, Milena ;
Revilla, Pedro ;
Charcosset, Alain ;
Martin, Olivier C. ;
Schoen, Chris-Carolin .
GENOME BIOLOGY, 2013, 14 (09)
[7]   On the adaptive control of the false discovery fate in multiple testing with independent statistics [J].
Benjamini, Y ;
Hochberg, Y .
JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2000, 25 (01) :60-83
[8]   INVITED COMMENTARY - BENEFITS OF HETEROGENEITY IN METAANALYSIS OF DATA FROM EPIDEMIOLOGIC STUDIES [J].
BERLIN, JA .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1995, 142 (04) :383-387
[9]   A Subset-Based Approach Improves Power and Interpretation for the Combined Analysis of Genetic Association Studies of Heterogeneous Traits [J].
Bhattacharjee, Samsiddhi ;
Rajaraman, Preetha ;
Jacobs, Kevin B. ;
Wheeler, William A. ;
Melin, Beatrice S. ;
Hartge, Patricia ;
Yeager, Meredith ;
Chung, Charles C. ;
Chanock, Stephen J. ;
Chatterjee, Nilanjan .
AMERICAN JOURNAL OF HUMAN GENETICS, 2012, 90 (05) :821-835
[10]   Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize [J].
Blanc, G. ;
Charcosset, A. ;
Mangin, B. ;
Gallais, A. ;
Moreau, L. .
THEORETICAL AND APPLIED GENETICS, 2006, 113 (02) :206-224