Optimising Forest Management Using Multi-Objective Genetic Algorithms

被引:0
作者
Castro, Isabel [1 ,2 ]
Salas-Gonzalez, Raul [2 ,3 ]
Fidalgo, Beatriz [3 ]
Farinha, Jose Torres [1 ,2 ]
Mendes, Mateus [1 ,2 ,4 ]
机构
[1] Polytech Univ Coimbra, Coimbra Inst Engn, Rua Pedro Nunes, P-3030199 Coimbra, Portugal
[2] Polytech Univ Coimbra, Coimbra Inst Engn, RCM2, Rua Pedro Nunes, P-3030199 Coimbra, Portugal
[3] Polytech Univ Coimbra, Coimbra Agr Sch, P-3045601 Bencanta, Coimbra, Portugal
[4] Univ Coimbra, Inst Syst & Robot, Dept Elect & Comp Engn, P-3030290 Coimbra, Portugal
关键词
forest management; optimization; Genetic Algorithm; multi-objective optimization; sustainability; Web integration; COMBINATORIAL OPTIMIZATION; CLIMATE-CHANGE;
D O I
10.3390/su162310655
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Forest management requires balancing ecological, economic, and social objectives, often involving complex optimisation problems. Traditional mathematical methods struggle with these challenges, leading to the adoption of metaheuristic approaches like the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). This paper introduces a custom NSGA-II algorithm, incorporating a specialised mutation operator to enhance solution generation for multi-objective forest planning. The custom NSGA-II is compared to the standard NSGA-II in a scenario aiming to maximise timber harvest volume and minimise its standard deviation, with a minimum volume constraint. Key performance metrics include non-dominated solutions, spacing, computational cost, and hypervolume. The results demonstrate that the custom NSGA-II provides more valid solutions and better explores the solution space. This approach offers a user-friendly and efficient tool for forest managers, integrating well with Web-based systems for modern, sustainability-oriented forest planning.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Implementation and comparison of algorithms for multi-objective optimization based on genetic algorithms applied to the management of an automated warehouse
    Nastasi, Gianluca
    Colla, Valentina
    Cateni, Silvia
    Campigli, Simone
    JOURNAL OF INTELLIGENT MANUFACTURING, 2018, 29 (07) : 1545 - 1557
  • [42] Implementation and comparison of algorithms for multi-objective optimization based on genetic algorithms applied to the management of an automated warehouse
    Gianluca Nastasi
    Valentina Colla
    Silvia Cateni
    Simone Campigli
    Journal of Intelligent Manufacturing, 2018, 29 : 1545 - 1557
  • [43] Thermodynamic Pareto optimization of turbojet engines using multi-objective genetic algorithms
    Atashkari, K
    Nariman-Zadeh, N
    Pilechi, A
    Jamali, A
    Yao, X
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2005, 44 (11) : 1061 - 1071
  • [44] Multi-objective optimization of bioethanol reactive dehydration processes using genetic algorithms
    Guzman Martinez, Carlos
    Napoles Rivera, Fabricio
    Castro-Montoya, Agustin
    SEPARATION SCIENCE AND TECHNOLOGY, 2021, 56 (18) : 3167 - 3182
  • [45] Parallel Multi-Objective Evolutionary Algorithms: A Comprehensive Survey
    Falcon-Cardona, Jesus Guillermo
    Gomez, Raquel Hernandez
    Coello, Carlos A. Coello
    Tapia, Ma. Guadalupe Castillo
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 67
  • [46] Multi-objective optimization of the sandwich panels with prismatic cores using genetic algorithms
    Tan, X. H.
    Soh, A. K.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2007, 44 (17) : 5466 - 5480
  • [47] A new method of system reliability multi-objective optimization using genetic algorithms
    Huang, Hong-Zhong
    Qu, Jian
    Zuo, Ming J.
    2006 PROCEEDINGS - ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, VOLS 1 AND 2, 2006, : 278 - +
  • [48] Multi-objective shape optimization of a heat exchanger using parallel genetic algorithms
    Hilbert, Renan
    Janiga, Gabor
    Baron, Romain
    Thevenin, Dominique
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (15-16) : 2567 - 2577
  • [49] A unified view of parallel multi-objective evolutionary algorithms
    Talbi, EI-Ghazali
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2019, 133 : 349 - 358
  • [50] Influence Maximization in Hypergraphs Using Multi-Objective Evolutionary Algorithms
    Genetti, Stefano
    Ribaga, Eros
    Cunegatti, Elia
    Lotito, Quintino F.
    Iacca, Giovanni
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PT IV, PPSN 2024, 2024, 15151 : 217 - 235