LiAlSiO4-coated Li1.2Mn0.54Ni0.13Co0.13O2 cathode: Enhancing Li-ion battery performance

被引:0
作者
Yang, Shang-Mei [1 ]
Shao, Shi-Ping [1 ]
Xie, Yu-Long [1 ]
机构
[1] Qinghai Minzu Univ, Sch Chem & Chem Engn, Qinghai Prov Key Lab Nanomat & Nanotechnol, Key Lab Resource Chem & Ecoenvironm Protect Tibeta, Xining, Peoples R China
来源
PLOS ONE | 2025年 / 20卷 / 02期
关键词
ELECTROCHEMICAL PERFORMANCE; RICH LI1.2NI0.13CO0.13MN0.54O2;
D O I
10.1371/journal.pone.0318327
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The lithium fast ion conductor LiAlSiO4 demonstrates exceptional lithium-ion transmission properties alongside remarkable chemical stability. Utilizing sol-gel techniques, we synthesized LiAlSiO4-coated cathode materials (LNCM@LASO) based on Li1.2Mn0.54Ni0.13Co0.13O2 to enhance their electrochemical performance. Rm space groups were identified in all materials through high-intensity diffraction peaks, indicating the presence of hexagonal layered alpha-NaFeO2 structures. Benefiting from the coating layer of LiAlSiO4, the conductivity and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 are significantly improved. Compared with the unmodified LASO-0 sample (42.27%), the LASO-3 sample exhibits a superior initial coulomb efficiency of 66.02%. At various charge/discharge rates (0.1, 0.2, 0.5, 1, and 2 C), the LASO-3 electrode exhibits specific discharge capacities of 210.6, 189.3, 168.1, 151.8, and 125.2 mAh<middle dot>g-1, correspondingly. Upon reverting the current density from 2 C to 0.1 C, the discharge capacity of the LASO-3 electrode rebounds to 206.4 mAh<middle dot>g-1. After 100 cycles at 0.1 C, the LASO-3 electrode achieves a peak capacity retention rate of 88.9%. The superior conductive properties and chemical stability of the LNCM@LASO enhance the electron and ion transfer, thereby preventing electrolyte attack and boosting the electrochemical performance. This research marks a crucial step towards developing high-capacity, low-cost lithium-ion batteries with wide-ranging implications across multiple disciplines and industries.
引用
收藏
页数:16
相关论文
共 53 条
  • [1] Ku L, Cai Y, Ma Y, Ma H, Zheng P, Liu Z, Et al., Enhanced electrochemical performances of layered-spinel hetero structured lithium-rich Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub> cathode materials, Chem Eng J, 370, pp. 499-507, (2019)
  • [2] Numata K, Sakaki C, Yamanaka S., Synthesis of solid solutions in a system of LiCoO<sub>2</sub>-Li<sub>2</sub>MnO<sub>3</sub> for cathode materials of secondary lithium batteries, J Chem Lett, 26, 8, pp. 725-726, (1997)
  • [3] Wu Q, Zhao L, Wu J., Effects of chelating agents on the performance of Li<sub>1.2</sub>Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>O<sub>2</sub> as cathode material for Li-ion battery prepared by sol-gel method, J Sol-Gel Sci Techn, 82, 2, pp. 335-343, (2017)
  • [4] Wang L, Yang W, Lv T, Gao K, Yan J., Adorned Li-rich Li<sub>1.2</sub>Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>O<sub>2</sub> with LiAlO<sub>2</sub> for improved electrochemical properties in lithium-ion batteries, Ionics, 25, 12, pp. 5681-5688, (2019)
  • [5] Wei T, Qin X, Lei C, Zhang Y., Considerable capacity improvement of Mn-based Li-rich cathode Li<sub>1.2</sub>Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>O<sub>2</sub> via KMnO<sub>4</sub> surface modification, J Alloy Compd, 895, (2022)
  • [6] Hashem A, Abdel-Ghany A, Ei-Tawil R, Mauger A, Julien CM., Effect of Na doping on the electrochemical performance of Li<sub>1.2</sub>Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>O<sub>2</sub> cathode for lithium-ion batteries, J Sustain Chem, 3, 2, pp. 131-148, (2022)
  • [7] Wu Z, Cheng Y, Shi Y, Xia M, Zhang Y, Hu X, Et al., Restriction of voltage decay by limiting low-voltage reduction in Li-rich oxide materials, J Colloid Interface Sci, 620, pp. 57-66, (2022)
  • [8] Vanaphuti P, Chen J, Cao J, Bigham K, Wang Y, Chen B, Et al., Enhanced electrochemical performance of lithium, manganese-rich cathode for li-ion batteries with Na and F co-doping, J. ACS Appl Mater Interfaces, 11, 41, pp. 37842-37849, (2019)
  • [9] Fu X, Wang J, Zhang L, Li T, Yang X., Enhanced electrochemical performance of Li<sub>1.2</sub>Mn<sub>0.54</sub>Ni<sub>0.</sub><sub>13</sub>Co<sub>0.13</sub>O<sub>2</sub> prepared by using activated carbon as template and carbon source, J Ionics, 26, 9, pp. 1-9, (2020)
  • [10] Murugan V, Saravanan R, Thangaian K, Partheeban T, Aravindan V, Srinivasan M, Et al., Modulating anion redox activity of Li<sub>1.2</sub>Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>O<sub>2</sub> through strong Sr-O bonds toward achieving stable li-ion half-/full-cell performance, J ACS Appl Energ Mater, 4, 10, pp. 11234-11247, (2021)