Accelerating Optimal Synthesis of Atomically Thin MoS2: A Constrained Bayesian Optimization Guided Brachistochrone Approach

被引:0
作者
Wang, Yujia [1 ,2 ]
Li, Guoyan [2 ,3 ]
Natarajan, Anand Hari [2 ,4 ]
Mukerjee, Sanjeev [1 ,2 ,5 ]
Jin, Xiaoning [2 ,3 ]
Kar, Swastik [1 ,2 ,4 ]
机构
[1] Northeastern Univ, Dept Chem Engn, Boston, MA 02115 USA
[2] Northeastern Univ, Quantum Mat & Sensing Inst, Burlington, MA 01803 USA
[3] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA
[4] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[5] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
2D Materials; Chemical Vapor Deposition; Machine learning; HIGH-QUALITY; GRAPHENE; PHOTOLUMINESCENCE; TRIONS; FILMS;
D O I
10.1002/admt.202401465
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A machine learning (ML) guided approach is presented for the accelerated optimization of chemical vapor deposition (CVD) synthesis of 2D materials toward the highest quality, starting from low-quality or unsuccessful synthesis conditions. Using 26 sets of these synthesis conditions as the initial training dataset, our method systematically guides experimental synthesis towards optoelectronic-grade monolayer MoS2 flakes. A-exciton linewidth (sigma(A)) as narrow as 38 meV could be achieved in 2D MoS2 flakes after only an additional 35 trials (reflecting 15% of the full factorial design dataset for training purposes). In practical terms, this reflects a decrease of the possible experimental time to optimize the parameters from up to one year to about two months. This remarkable efficiency was achieved by formulating a constrained sequencing optimization problem solved via a combination of constraint learning and Bayesian Optimization with the narrowness of sigma(A) as the single target metric. By employing graph-based semi-supervised learning with data acquired through a multi-criteria sampling method, the constraint model effectively delineates and refines the feasible design space for monolayer flake production. Additionally, the Gaussian Process regression effectively captures the relationships between synthesis parameters and outcomes, offering high predictive capability along with a measure of prediction uncertainty. This method is scalable to a higher number of synthesis parameters and target metrics and is transferrable to other materials and types of reactors. This study envisions that this method will be fundamental for CVD and similar techniques in the future.
引用
收藏
页数:11
相关论文
共 40 条
[1]   Machine Learning Guided Synthesis of Flash Graphene [J].
Beckham, Jacob L. ;
Wyss, Kevin M. ;
Xie, Yunchao ;
McHugh, Emily A. ;
Li, John Tianci ;
Advincula, Paul A. ;
Chen, Weiyin ;
Lin, Jian ;
Tour, James M. .
ADVANCED MATERIALS, 2022, 34 (12)
[2]  
Bergmann D, 2020, IEEE DECIS CONTR P, P3592, DOI 10.1109/CDC42340.2020.9304209
[3]   Chemical Vapor Deposition Synthesized Atomically Thin Molybdenum Disulfide with Optoelectronic-Grade Crystalline Quality [J].
Bilgin, Ismail ;
Liu, Fangze ;
Vargas, Anthony ;
Winchester, Andrew ;
Man, Michael K. L. ;
Upmanyu, Moneesh ;
Dani, Keshav M. ;
Gupta, Gautam ;
Talapatra, Saikat ;
Mohite, Aditya D. ;
Kar, Swastik .
ACS NANO, 2015, 9 (09) :8822-8832
[4]   Excitonic Linewidth Approaching the Homogeneous Limit in MoS2-Based van der Waals Heterostructures [J].
Cadiz, F. ;
Courtade, E. ;
Robert, C. ;
Wang, G. ;
Shen, Y. ;
Cai, H. ;
Taniguchi, T. ;
Watanabe, K. ;
Carrere, H. ;
Lagarde, D. ;
Manca, M. ;
Amand, T. ;
Renucci, P. ;
Tongay, S. ;
Marie, X. ;
Urbaszek, B. .
PHYSICAL REVIEW X, 2017, 7 (02)
[5]   Efficient Closed-loop Maximization of Carbon Nanotube Growth Rate using Bayesian Optimization [J].
Chang, Jorge ;
Nikolaev, Pavel ;
Carpena-Nunez, Jennifer ;
Rao, Rahul ;
Decker, Kevin ;
Islam, Ahmad E. ;
Kim, Jiseob ;
Pitt, Mark A. ;
Myung, Jay I. ;
Maruyama, Benji .
SCIENTIFIC REPORTS, 2020, 10 (01)
[6]   Large-scale synthesis of graphene and other 2D materials towards industrialization [J].
Choi, Soo Ho ;
Yun, Seok Joon ;
Won, Yo Seob ;
Oh, Chang Seok ;
Kim, Soo Min ;
Kim, Ki Kang ;
Lee, Young Hee .
NATURE COMMUNICATIONS, 2022, 13 (01)
[7]   Long tailed trions in monolayer MoS2: Temperature dependent asymmetry and resulting red-shift of trion photoluminescence spectra [J].
Christopher, Jason W. ;
Goldberg, Bennett B. ;
Swan, Anna K. .
SCIENTIFIC REPORTS, 2017, 7
[8]   Data-driven assessment of chemical vapor deposition grown MoS2 monolayer thin films [J].
Costine, Anna ;
Delsa, Paige ;
Li, Tianxi ;
Reinke, Petra ;
Balachandran, Prasanna V. .
JOURNAL OF APPLIED PHYSICS, 2020, 128 (23)
[9]   Gaussian Process Regression for Materials and Molecules [J].
Deringer, Volker L. ;
Bartok, Albert P. ;
Bernstein, Noam ;
Wilkins, David M. ;
Ceriotti, Michele ;
Csanyi, Gabor .
CHEMICAL REVIEWS, 2021, 121 (16) :10073-10141
[10]  
Gelbart MA, 2014, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, P250