Studying the growth and morphology of metal microstructures in sodium metal batteries with ionic liquid electrolytes by operando 23Na NMR spectroscopy

被引:3
作者
Gunathilaka, Isuru E. [1 ]
Ferdousi, Shammi A. [2 ]
Chen, Fangfang [2 ]
Armand, Michel [3 ]
Padua, Agilio A. H. [4 ,5 ]
Howlett, Patrick C. [2 ]
Forsyth, Maria [2 ]
O'Dell, Luke A. [1 ]
机构
[1] Deakin Univ, Inst Frontier Mat, Geelong Waurn Ponds Campus, Geelong, Vic 3220, Australia
[2] Deakin Univ, Inst Frontier Mat, Melbourne Burwood Campus, Melbourne, Vic 3125, Australia
[3] Basque Res & Technol Alliance BRTA, Ctr Cooperat Res Alternat Energies CIC energiGUNE, Vitoria 01510, Spain
[4] Ecole Normale Super Lyon, Lab Chim, F-69342 Lyon, France
[5] CNRS, F-69342 Lyon, France
基金
澳大利亚研究理事会;
关键词
Operando NMR; Sodium batteries; Dendrites; SEI; LITHIUM; ELECTRODES;
D O I
10.1016/j.nanoen.2024.110479
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium metal batteries are a potentially promising energy storage solution due to the abundance and low cost of sodium and high energy density of metal anodes. However, the growth of microstructural metal during cycling remains a crucial safety and performance issue to be addressed. Herein we investigate this process in sodium metal symmetric cells using operando 23 Na nuclear magnetic resonance spectroscopy. We analyse the NMR signal arising from the microstructural sodium metal to obtain quantitative and qualitative information on its growth and morphology, observing significant differences in the evolution of the microstructures for different electrolytes, including ionic liquids with different sodium salt concentrations, water as an additive, and comparing with a more traditional organic electrolyte. The results correlate well with the previously reported cycling performance of these electrolytes, as well as ex situ SEM images of the electrode surface after cycling.
引用
收藏
页数:7
相关论文
共 31 条
[21]   Sodium Metal Anodes: Emerging Solutions to Dendrite Growth [J].
Lee, Byeongyong ;
Paek, Eunsu ;
Mitlin, David ;
Lee, Seung Woo .
CHEMICAL REVIEWS, 2019, 119 (08) :5416-5460
[22]  
Liu J, 2023, NEXT ENERGY, V1, DOI [10.1016/j.nxener.2023.100015, 10.1016/j.nxener.2023.100015]
[23]  
Liu Yang, 2022, Journal of Physics: Conference Series, V2152, DOI [10.1088/1742-6596/2152/1/012060, 10.1088/1742-6596/2152/1/012060]
[24]   Thermal and Transport Properties of Na[N(SO2F)2]-[N-Methyl-N-propylpyrrolidinium][N(SO2F)2] Ionic Liquids for Na Secondary Batteries [J].
Matsumoto, Kazuhiko ;
Okamoto, Yu ;
Nohira, Toshiyuki ;
Hagiwara, Rika .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (14) :7648-7655
[25]   Li-ion battery materials: present and future [J].
Nitta, Naoki ;
Wu, Feixiang ;
Lee, Jung Tae ;
Yushin, Gleb .
MATERIALS TODAY, 2015, 18 (05) :252-264
[26]  
Rees Gregory J, 2021, Angew Chem Weinheim Bergstr Ger, V133, P2138, DOI 10.1002/ange.202013066
[27]   Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization [J].
Tian, Yaosen ;
Zeng, Guobo ;
Rutt, Ann ;
Shi, Tan ;
Kim, Haegyeom ;
Wang, Jingyang ;
Koettgen, Julius ;
Sun, Yingzhi ;
Ouyang, Bin ;
Chen, Tina ;
Lun, Zhengyan ;
Rong, Ziqin ;
Persson, Kristin ;
Ceder, Gerbrand .
CHEMICAL REVIEWS, 2021, 121 (03) :1623-1669
[28]   Fundamentals, status and promise of sodium-based batteries [J].
Usiskin, Robert ;
Lu, Yaxiang ;
Popovic, Jelena ;
Law, Markas ;
Balaya, Palani ;
Hu, Yong-Sheng ;
Maier, Joachim .
NATURE REVIEWS MATERIALS, 2021, 6 (11) :1020-1035
[29]   A cost and resource analysis of sodium-ion batteries [J].
Vaalma, Christoph ;
Buchholz, Daniel ;
Weil, Marcel ;
Passerini, Stefano .
NATURE REVIEWS MATERIALS, 2018, 3 (04)
[30]   Visualizing the growth process of sodium microstructures in sodium batteries by in-situ23Na MRI and NMR spectroscopy [J].
Xiang, Yuxuan ;
Zheng, Guorui ;
Liang, Ziteng ;
Jin, Yanting ;
Liu, Xiangsi ;
Chen, Shijian ;
Zhou, Ke ;
Zhu, Jianping ;
Lin, Min ;
He, Huajin ;
Wan, Jiajia ;
Yu, Shenshui ;
Zhong, Guiming ;
Fu, Riqiang ;
Li, Yangxing ;
Yang, Yong .
NATURE NANOTECHNOLOGY, 2020, 15 (10) :883-+