A Lightweight Person Detector for Surveillance Footage Based on YOLOv8n

被引:0
|
作者
Wang, Qicheng [1 ]
Feng, Guoqiang [1 ]
Li, Zongzhe [1 ]
机构
[1] Air Force Engn Univ, Equipment Management & UAV Engn Sch, Xian 710051, Peoples R China
关键词
object detection; YOLO; lightweight network; deep learning; surveillance footage;
D O I
10.3390/s25020436
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To enable person detection tasks in surveillance footage to be deployed on edge devices and their efficient performance in resource-constrained environments in real-time, a lightweight person detection model based on YOLOv8n was proposed. This model balances high accuracy with low computational cost and parameter size. First, the MSBlock module was introduced into YOLOv8n. Then, a series of modifications were made to the MSBlock structure. Next, a heterogeneous PAFPN with improved MSBlock was formed using heterogeneous convolution kernels. Finally, AKConv, a variable kernel convolution, was applied to further reduce the number of parameters and the computational cost while improving accuracy. A series of experiments demonstrated that, due to these improvements, the proposed lightweight model achieved a reduction of nearly 10% in parameter size and 5% in the floating-point computational cost compared to the original YOLOv8n. Additionally, on a custom surveillance dataset, the model shows a 1.4% improvement in mAP@0.5:0.95, and on a more complex subset of the PASVOC public dataset, the model achieved a 2.8% improvement in mAP@0.5 and a 1.2% improvement in mAP@0.5:0.95, proving the high accuracy and generalization ability of the improved lightweight model.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Detection of Traffic Signs Based on Lightweight YOLOv8n
    Liu, Shihong
    Li, Shiwei
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1200 - 1204
  • [2] Fabric Defect Detection Based on Improved Lightweight YOLOv8n
    Ma, Shuangbao
    Liu, Yuna
    Zhang, Yapeng
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [3] Improved YOLOv8n for Lightweight Ship Detection
    Gao, Zhiguang
    Yu, Xiaoyan
    Rong, Xianwei
    Wang, Wenqi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (10)
  • [4] RDB-YOLOv8n: Insulator defect detection based on improved lightweight YOLOv8n model
    Jiang, Yong
    Wang, Shuai
    Cao, Weifeng
    Liang, Wanyong
    Shi, Jun
    Zhou, Lintao
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (05)
  • [5] TBF-YOLOv8n: A Lightweight Tea Bud Detection Model Based on YOLOv8n Improvements
    Fang, Wenhui
    Chen, Weizhen
    SENSORS, 2025, 25 (02)
  • [6] Lightweight Algorithm for Rail Fastener Status Detection Based on YOLOv8n
    Zhang, Xingsheng
    Shen, Benlan
    Li, Jincheng
    Ruan, Jiuhong
    ELECTRONICS, 2024, 13 (17)
  • [7] A Lightweight Method for Road Damage Detection Based on Improved YOLOv8n
    Li, Xudong
    Zhang, Yujun
    ENGINEERING LETTERS, 2025, 33 (01) : 114 - 123
  • [8] Lightweight Underwater Target Detection Algorithm Based on Improved YOLOv8n
    Xie, Guobo
    Liang, Lihui
    Lin, Zhiyi
    Lin, Songze
    Su, Qing
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (24)
  • [9] Research on Improved Lightweight Fish Detection Algorithm Based on Yolov8n
    Zhang, Qingyang
    Chen, Shizhe
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (10)
  • [10] Recognizing safflower using improved lightweight YOLOv8n
    Zhang, Xinyue
    Hu, Guangrui
    Li, Puhang
    Cao, Xiaoming
    Zhang, Hao
    Chen, Jun
    Yang, Liangliang
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (13): : 163 - 170