共 31 条
- [1] Arzani A., Wang J.-X., D'Souza R.M., Uncovering near-wall blood flow from sparse data with physics-informed neural networks, Phys Fluids, 33, 7, (2021)
- [2] Bolandi H., Sreekumar G., Li X., Lajnef N., Boddeti V.N., Physics informed neural network for dynamic stress prediction, Appl Intell, 53, 22, pp. 26313-26328, (2023)
- [3] Cuomo S., Di Cola V.S., Giampaolo F., Rozza G., Raissi M., Piccialli F., Scientific machine learning through physics–informed neural networks: where we are and what’s next, J Sci Comput, 92, 3, (2022)
- [4] Desmoulin G.T., Pradhan V., Milner T.E., Mechanical aspects of intervertebral disc injury and implications on biomechanics, Spine (Phila Pa 1976), 45, 8, pp. E457-E464, (2020)
- [5] Du Toit J.F., Laubscher R., Evaluation of physics-informed neural network solution accuracy and efficiency for modeling aortic transvalvular blood flow, MCA, 28, 2, (2023)
- [6] Galbusera F., Casaroli G., Bassani T., Artificial intelligence and machine learning in spine research, JOR Spine, 2, 1, (2019)
- [7] Ghezelbash F., Hossein Eskandari A., Robert-Lachaine X., Cao S., Pesteie M., Qiao Z., Shirazi-Adl A., Lariviere C., Machine learning applications in spine biomechanics, J Biomech, 166, (2024)
- [8] Grossmann T.G., Komorowska U.J., Latz J., Schonlieb C.-B., Can physics-informed neural networks beat the finite element method?, IMA J Appl Math, 89, 1, pp. hxae011-hxae174, (2024)
- [9] Iatridis J.C., Setton L.A., Weidenbaum M., Mow V.C., The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear, J Biomech, 30, 10, pp. 1005-1013, (1997)
- [10] Iatridis J.C., Weidenbaum M., Setton L.A., Mow V.C., Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc, Spine (Phila Pa 1976), 21, 10, pp. 1174-1184, (1996)