Hausdorff Operators on Weighted Mixed Norm Fock Spaces

被引:0
作者
Liu, Yongqing [1 ]
机构
[1] Changshu Inst Technol, Sch Math & Stat, Changshu 215500, Jiangsu, Peoples R China
关键词
Weighted mixed norm Fock spaces; Hausdorff operators; Boundedness; Compactness; Power boundedness; Uniformly mean ergodicity; DIFFERENTIATION; DYNAMICS; HARDY;
D O I
10.1007/s40840-025-01832-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study Hausdorff operator H mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_\mu $$\end{document} on weighted mixed norm Fock spaces F phi p,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_\phi <^>{p,q}$$\end{document} for 1 <= p,q <=infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p,q\le \infty $$\end{document}. The boundedness and compactness of H mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_\mu $$\end{document} on F phi p,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_\phi <^>{p,q}$$\end{document} are characterized, and we give when H mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_\mu $$\end{document} on F phi p,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_\phi <^>{p,q}$$\end{document} is power bounded or uniformly mean ergodic.
引用
收藏
页数:17
相关论文
共 33 条
[31]  
Yosida K, 1944, ANN MATH, V42, P188
[32]  
Zhu Kehe, 2012, ANAL FOCK SPACES, V263
[33]   Fractional Integration on Mixed Norm Spaces. II [J].
Zhu, Xiaolin ;
Fang, Xiang ;
Guo, Feng ;
Hou, Shengzhao .
JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (05)