A certain generalized Lucas sequence and its application to the permutation binomials over finite fields

被引:0
作者
Zhang, Zhilin [1 ]
Li, Hongjian [2 ]
Tian, Delu [3 ]
机构
[1] Guangdong Univ Finance & Econ, Sch Stat & Math, Guangzhou 510320, Guangdong, Peoples R China
[2] Guangdong Univ Foreign Studies, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
[3] Guangdong Univ Educ, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Lucas sequence; Permutation binomials; Finite fields; DIGITAL-SIGNATURES; POLYNOMIALS; TRINOMIALS; ELEMENTS;
D O I
10.1007/s13226-024-00716-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we firstly present some basic properties of the certain generalized Lucas sequence. We subsequently describe a relationship between this sequence and the corresponding lacunary sums of binomial coefficients. Due to the relationship, we finally characterize a new class of permutation binomials over finite fields.
引用
收藏
页数:12
相关论文
共 27 条
[11]  
Koshy T., 2001, PUR AP M-WI
[12]   Permutation polynomials and applications to coding theory [J].
Laigle-Chapuy, Yann .
FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (01) :58-70
[13]   An extended theory of Lucas' functions [J].
Lehmer, DH .
ANNALS OF MATHEMATICS, 1930, 31 :419-448
[14]   New classes of permutation binomials and permutation trinomials over finite fields [J].
Li, Kangquan ;
Qu, Longjiang ;
Chen, Xi .
FINITE FIELDS AND THEIR APPLICATIONS, 2017, 43 :69-85
[15]   WHEN DOES A POLYNOMIAL OVER A FINITE-FIELD PERMUTE THE ELEMENTS OF THE FIELD [J].
LIDL, R ;
MULLEN, GL .
AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (03) :243-246
[16]   WHEN DOES A POLYNOMIAL OVER A FINITE-FIELD PERMUTE THE ELEMENTS OF THE FIELD .2. [J].
LIDL, R ;
MULLEN, GL .
AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (01) :71-74
[17]  
Lidl R.Niederreiter., 1997, Finite Fields
[18]  
Ribenboim P., 1989, The Book of Prime Number Records, DOI [10.1007/978-1-4684-0507-1, DOI 10.1007/978-1-4684-0507-1]
[19]  
RIVEST RL, 1978, COMMUN ACM, V21, P120, DOI 10.1145/357980.358017
[20]   Public key encryption and digital signatures based on permutation polynomials [J].
Schwenk, J ;
Huber, K .
ELECTRONICS LETTERS, 1998, 34 (08) :759-760