Stochastic Kuramoto oscillators with inertia and higher-order interactions

被引:1
作者
Rajwani, Priyanka [1 ]
Jalan, Sarika [1 ]
机构
[1] Indian Inst Technol Indore, Dept Phys, Complex Syst Lab, Khandwa Rd, Simrol 453552, Indore, India
关键词
SYNCHRONIZATION; POPULATIONS; NOISE; NETWORKS; DYNAMICS;
D O I
10.1103/PhysRevE.111.L012202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The impact of noise in coupled oscillators with pairwise interactions has been extensively explored. Here, we study stochastic second-order coupled Kuramoto oscillators with higher-order interactions and show that as noise strength increases, the critical points associated with synchronization transitions shift toward higher coupling values. By employing the perturbation analysis, we obtain an expression for the forward critical point as a function of inertia and noise strength. Further, for overdamped systems, we show that as noise strength increases, the first-order transition switches to second-order even for higher-order couplings. We include a discussion on the nature of critical points obtained through Ott-Antonsen ansatz.
引用
收藏
页数:7
相关论文
共 40 条
[1]   Synchronization in populations of globally coupled oscillators with inertial effects [J].
Acebrón, JA ;
Bonilla, LL ;
Spigler, R .
PHYSICAL REVIEW E, 2000, 62 (03) :3437-3454
[2]   Adaptive frequency model for phase-frequency synchronization in large populations of globally coupled nonlinear oscillators [J].
Acebron, JA ;
Spigler, R .
PHYSICAL REVIEW LETTERS, 1998, 81 (11) :2229-2232
[3]  
Arfken G.B., 2005, Mathematical Methods for Physicists: A Comprehensive Guide, VSixth
[4]   Influence of noise on the synchronization of the stochastic Kuramoto model [J].
Bag, Bidhan Chandra ;
Petrosyan, K. G. ;
Hu, Chin-Kun .
PHYSICAL REVIEW E, 2007, 76 (05)
[5]   Networks beyond pairwise interactions: Structure and dynamics [J].
Battiston, Federico ;
Cencetti, Giulia ;
Iacopini, Iacopo ;
Latora, Vito ;
Lucas, Maxime ;
Patania, Alice ;
Young, Jean-Gabriel ;
Petri, Giovanni .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2020, 874 :1-92
[6]   Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review [J].
Bick, Christian ;
Goodfellow, Marc ;
Laing, Carlo R. ;
Martens, Erik A. .
JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2020, 10 (01)
[7]   Effect of adaptation functions and multilayer topology on synchronization [J].
Biswas, Dhrubajyoti ;
Gupta, Sayan .
PHYSICAL REVIEW E, 2024, 109 (02)
[8]   The structure and dynamics of networks with higher order interactions [J].
Boccaletti, S. ;
De Lellis, P. ;
del Genio, C. I. ;
Alfaro-Bittner, K. ;
Criado, R. ;
Jalan, S. ;
Romance, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2023, 1018 :1-64
[9]   Synchronization in a system of Kuramoto oscillators with distributed Gaussian noise [J].
Campa, Alessandro ;
Gupta, Shamik .
PHYSICAL REVIEW E, 2023, 108 (06)
[10]   Influence of stochastic perturbations on the cluster explosive synchronization of second-order Kuramoto oscillators on networks [J].
Cao, Liang ;
Tian, Changhai ;
Wang, Zhenhua ;
Zhang, Xiyun ;
Liu, Zonghua .
PHYSICAL REVIEW E, 2018, 97 (02)