Aqueous Phase Reforming by Platinum Catalysts: Effect of Particle Size and Carbon Support

被引:0
|
作者
Nguyen, Xuan Trung [1 ]
Kitching, Ella [2 ]
Slater, Thomas [2 ]
Pitzalis, Emanuela [1 ]
Filippi, Jonathan [3 ]
Oberhauser, Werner [3 ]
Evangelisti, Claudio [1 ]
机构
[1] Natl Res Council CNR, Inst Chem OrganoMetall Cpds ICCOM, Via G Moruzzi 1, I-56124 Pisa, Italy
[2] Cardiff Univ, Cardiff Catalysis Inst CCI, Maindy Rd, Cardiff CF24 4HQ, Wales
[3] Natl Res Council CNR, Inst Chem OrganoMetall Cpds ICCOM, Via Madonna Piano 10, I-50019 Sesto Fiorentino, Italy
关键词
aqueous phase reforming; ethylene glycol; Pt catalyst; hydrogen production; nanoparticles; PET; ETHYLENE-GLYCOL; HETEROGENEOUS CATALYSIS; OXYGENATED HYDROCARBONS; HYDROGEN-PRODUCTION; NANOPARTICLES; ACID; ELECTROCATALYST; ADSORPTION; KINETICS; GLYCEROL;
D O I
10.3390/catal14110798
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous phase reforming (APR) is a promising method for producing hydrogen from biomass-derived feedstocks. In this study, carbon-supported Pt catalysts containing particles of different sizes (below 3 nm) were deposited on different commercially available carbons (i.e., Vulcan XC72 and Ketjenblack EC-600JD) using the metal vapor synthesis approach, and their catalytic efficiency and stability were evaluated in the aqueous phase reforming of ethylene glycol, the simplest polyol containing both C-C and C-O bonds. High-surface-area carbon supports were found to stabilize Pt nanoparticles with a mean diameter of 1.5 nm, preventing metal sintering. In contrast, Pt single atoms and clusters (below 0.5 nm) were not stable under the reaction conditions, contributing minimally to catalytic activity and promoting particle growth. The most effective catalyst PtA/CK, containing a mean Pt NP size of 1.5 nm and highly dispersed on Ketjenblack carbon, demonstrated high hydrogen site time yield (8.92 min-1 at 220 degrees C) and high stability under both high-temperature treatment conditions and over several recycling runs. The catalyst was also successfully applied to the APR of polyethylene terephthalate (PET), showing potential for hydrogen production from plastic waste.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts
    Shabaker, JW
    Davda, RR
    Huber, GW
    Cortright, RD
    Dumesic, JA
    JOURNAL OF CATALYSIS, 2003, 215 (02) : 344 - 352
  • [32] Aqueous-phase reforming of ethylene glycol on Co/ZnO catalysts prepared by the coprecipitation method
    Chu, Xianwen
    Liu, Jun
    Sun, Bo
    Dai, Rui
    Pei, Yan
    Qiao, Minghua
    Fan, Kangnian
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2011, 335 (1-2) : 129 - 135
  • [33] Hydrogen production by aqueous-phase reforming of glycerol over Ni-B catalysts
    Guo, Yong
    Liu, Xiaohui
    Azmat, Muhammad Usman
    Xu, Wenjie
    Ren, Jiawen
    Wang, Yanqin
    Lu, Guanzhong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (01) : 227 - 234
  • [34] Directed aqueous-phase reforming of glycerol through tailored platinum nanoparticles
    Callison, J.
    Subramanian, N. D.
    Rogers, S. M.
    Chutia, A.
    Gianolio, D.
    Catlow, C. R. A.
    Wells, P. P.
    Dimitratos, N.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 238 : 618 - 628
  • [35] Nickel aluminate spinel-derived catalysts for the aqueous phase reforming of glycerol: Effect of reduction temperature
    Morales-Marin, A.
    Ayastuy, J. L.
    Iriarte-Velasco, U.
    Gutierrez-Ortiz, M. A.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 244 : 931 - 945
  • [36] Bimetallic Pt-Ni composites on ceria-doped alumina supports as catalysts in the aqueous-phase reforming of glycerol
    Rahman, M. M.
    Church, Tamara L.
    Variava, Meherzad F.
    Harris, Andrew T.
    Minett, Andrew I.
    RSC ADVANCES, 2014, 4 (36): : 18951 - 18960
  • [37] Effect of support's basic properties on hydrogen production in aqueous-phase reforming of glycerol and correlation between WGS and APR
    Guo, Yong
    Azmat, Muhammad Usman
    Liu, Xiaohui
    Wang, Yanqin
    Lu, Guanzhong
    APPLIED ENERGY, 2012, 92 : 218 - 223
  • [38] Aqueous-phase reforming of glycerol over Pt-Co catalyst: Effect of process variables
    Reynoso, A. J.
    Ayastuy, J. L.
    Iriarte-Velasco, U.
    Gutierrez-Ortiz, M. A.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (03):
  • [39] Ir-Based Bimetallic Catalysts for Hydrogen Production through Glycerol Aqueous-Phase Reforming
    Espinosa-Moreno, Francisco
    Balla, Putrakumar
    Shen, Wenjie
    Chavarria-Hernandez, Juan C.
    Ruiz-Gomez, Miguel
    Tlecuitl-Beristain, Saul
    CATALYSTS, 2018, 8 (12):
  • [40] Effect of CeO2 Addition to Al2O3 Supports for Pt Catalysts on the Aqueous-Phase Reforming of Glycerol
    Rahman, M. M.
    Church, Tamara L.
    Minett, Andrew I.
    Harris, Andrew T.
    CHEMSUSCHEM, 2013, 6 (06) : 1006 - 1013