Nano- and Microscale Design of Electrically Conductive Bacterial Cellulose/PEDOT Cryogels for Electromagnetic Interference Shielding

被引:0
作者
Samsami, Shakiba [1 ]
Amini, Majed [2 ]
Ojagh, Seyed Mohammad Amin [3 ]
Amirieh, Estatira [1 ]
Takagi, Ayako [4 ]
van de Ven, Theo G. M. [3 ]
Arjmand, Mohammad [2 ]
Rojas, Orlando J. [4 ,5 ,6 ]
Tam, Kam Chiu [1 ]
Kamkar, Milad [1 ]
机构
[1] Univ Waterloo, Waterloo Inst Nanotechnol, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
[2] Univ British Columbia, Sch Engn, Nanomat & Polymer Nanocompos Lab, British Columbia V, 1V 1V7, Kelowna, BC, Canada
[3] McGill Univ, Pulp & Paper Res Ctr, Dept Chem, Montreal, PQ H3A 2A7, Canada
[4] Univ British Columbia, Bioprod Inst, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
[5] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada
[6] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
COMPOSITES; FILMS;
D O I
10.1021/acs.langmuir.4c05363
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Exploiting conductive biobased polymer nanocomposites for electromagnetic interference (EMI) shielding is a rapidly evolving research area. In this study, we systematically fine-tune the nano- and microstructural features of bacterial cellulose (BC) modified with poly(3,4-ethylenedioxythiophene) (PEDOT) for EMI shielding applications. First, to investigate the effect of nanostructure, PEDOT is incorporated into the BC matrix using two methods: chemical vapor polymerization (CVP) and in situ polymerization. The CVP method produces more uniform and denser BC-PEDOT nanocomposites, resulting in cryogels with higher electrical conductivity and total EMI shielding effectiveness (SET) (52 +/- 2 S/m, 37 dB) compared to those of the in situ polymerized BC-PEDOT cryogels (7 +/- 1.5 S/m, 27 dB). The cryogels' microstructure is then adjusted to control the EMI shielding mechanisms by applying different drying methods: freeze-drying, air-drying, and hybrid freeze- and air-drying. Our results indicate that the more energy-efficient air-drying method enhances the reflection-dominant EMI shielding mechanism, with a slight increase in total shielding effectiveness. The drying conditions also affect the final mechanical properties of the samples. Overall, this study demonstrates that BC-PEDOT nanocomposites are excellent candidates for EMI shielding applications.
引用
收藏
页码:5614 / 5623
页数:10
相关论文
共 54 条
[1]   Electrical and optical properties of bacterial cellulose films modified with conductive polymer PEDOT/PSS [J].
Aleshin, Andrey N. ;
Berestennikov, Alexander S. ;
Krylov, Pavel S. ;
Shcherbakov, Igor P. ;
Petrov, Vasily N. ;
Trapeznikova, Irina N. ;
Mamalimov, Rustam I. ;
Khripunov, Albert K. ;
Tkachenko, Albina A. .
SYNTHETIC METALS, 2015, 199 :147-151
[2]   Surfactant-Mediated Highly Conductive Cellulosic Inks for High-Resolution 3D Printing of Robust and Structured Electromagnetic Interference Shielding Aerogels [J].
Amini, Majed ;
Hosseini, Hadi ;
Dutta, Subhajit ;
Wuttke, Stefan ;
Kamkar, Milad ;
Arjmand, Mohammad .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (47) :54753-54765
[3]   Application of TOPSIS algorithm in describing bacterial cellulose-based composite hydrogel performance in incorporating methylene blue as a model drug [J].
Amrabadi, Touraj ;
Jalilnejad, Elham ;
Ojagh, Seyed Mohammad Amin ;
Vahabzadeh, Farzaneh .
SCIENTIFIC REPORTS, 2023, 13 (01)
[4]   Vapor phase synthesized poly(3,4-ethylenedioxy-thiophene)-trifluoromethanesulfonate as a transparent conductor material [J].
Brooke, Robert ;
Franco-Gonzalez, Juan Felipe ;
Wijeratne, Kosala ;
Pavlopoulou, Eleni ;
Galliani, Daniela ;
Liu, Xianjie ;
Valiollahi, Roudabeh ;
Zozoulenko, Igor V. ;
Crispin, Xavier .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (43) :21304-21312
[5]   Gluconacetobacter medellinensis sp nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar [J].
Castro, Cristina ;
Cleenwerck, Ilse ;
Trcek, Janja ;
Zuluaga, Robin ;
De Vos, Paul ;
Caro, Gloria ;
Aguirre, Ricardo ;
Putaux, Jean-Luc ;
Ganan, Piedad .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2013, 63 :1119-1125
[6]   Wearable Stretch Sensors for Human Movement Monitoring and Fall Detection in Ergonomics [J].
Chander, Harish ;
Burch, Reuben F. ;
Talegaonkar, Purva ;
Saucier, David ;
Luczak, Tony ;
Ball, John E. ;
Turner, Alana ;
Arachchige, Sachini N. K. Kodithuwakku ;
Carroll, Will ;
Smith, Brian K. ;
Knight, Adam ;
Prabhu, Raj K. .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (10)
[7]   Facile approach to the fabrication of 3D electroconductive nanofibers with controlled size and conductivity templated by bacterial cellulose [J].
Chen, Chuntao ;
Yu, Yalin ;
Li, Kangming ;
Zhao, Mengyao ;
Liu, Lin ;
Yang, Jiazhi ;
Liu, Jian ;
Sun, Dongping .
CELLULOSE, 2015, 22 (06) :3929-3939
[8]   Electrodeposition of PEDOT-rGO film in aqueous solution for detection of acetaminophen in traditional medicaments [J].
Cong Thanh Ly ;
Chien Thang Phan ;
Cam Nhung Vu ;
Hoang Sinh Le ;
Thi Tuyet Nguyen ;
Dai Lam Tran ;
Lan Anh Le ;
Thi Thu Vu .
ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, 2019, 10 (01)
[9]   Process-Structure-Property Relationships for Porous Membranes Formed by Polymerization of Solid Monomer by a Vapor-Phase Initiator [J].
Dianat, Golnaz ;
Movsesian, Nareh ;
Gupta, Malancha .
MACROMOLECULES, 2018, 51 (24) :10297-10303
[10]   Bacterial-Cellulose-Reinforced Graphite Nanoplate Films for Electromagnetic Interference Shielding, Heat Conduction, and Joule Heating [J].
Fan, Mingshuai ;
Song, Jingyi ;
Qu, Meijie ;
Li, Shuhui ;
Chen, Ru ;
Ma, Yue ;
Tang, Ping ;
Yuezhen, Bin .
ACS APPLIED NANO MATERIALS, 2023, 6 (12) :10202-10212