Repeated fuel treatments fall short of fire-adapted regeneration objectives in a Sierra Nevada mixed conifer forest, USA

被引:1
作者
Nagelson, P. Bryant [1 ]
York, Robert A. [2 ]
Shoemaker, Kevin T. [1 ,3 ]
Foster, Daniel E. [2 ]
Stephens, Scott L. [2 ]
Bisbing, Sarah M. [1 ,3 ]
机构
[1] Univ Nevada, Dept Nat Resources & Environm Sci, Reno, NV 89557 USA
[2] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA USA
[3] Univ Nevada, Program Ecol Evolut & Conservat Biol, Reno, NV USA
关键词
California black oak; climate; Douglas-fir; fire and fire surrogates; fuel reduction; incense-cedar; mechanical treatments; ponderosa pine; prescribed fire; silviculture; sugar pine; white fir; PRESCRIBED FIRE; PINUS-PONDEROSA; CLIMATE-CHANGE; RESTORATION TREATMENTS; SPATIAL-PATTERNS; TREE MORTALITY; REDUCTION; SEED; VEGETATION; MANAGEMENT;
D O I
10.1002/eap.3075
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Fire exclusion over the last two centuries has driven a significant fire deficit in the forests of western North America, leading to widespread changes in the composition and structure of these historically fire-adapted ecosystems. Fuel treatments have been increasingly applied over the last few decades to mitigate fire hazard, yet it is unclear whether these fuel-focused treatments restore the fire-adapted conditions and species that will allow forests to persist into the future. A vital prerequisite of restoring fire-adaptedness is ongoing establishment of fire-tolerant tree species, and both the type and reoccurrence of fuel treatments are likely to strongly influence stand trajectories. Here, we leveraged a long-term study of repeated fuel treatments in a Sierra Nevada mixed-conifer forest to examine the regeneration response of six native tree species to the repeated application of common fuel treatments: prescribed fire, mechanical, mechanical plus fire, and untreated controls. Our objectives were to (1) quantify differences in forest structure and composition following the repeated application of alternative fuel treatments that may influence the establishment environment and then (2) identify the stand structure and climate conditions influencing seedling dynamics. We found that both treatment type and intensity are highly influential in shifting forests toward more fire-adapted conditions and determining species-specific regeneration dynamics. Specifically, the conifer species tracked here increased in either colonization or persistence potential following repeated applications of fire, indicating fire may be most effective for restoring regeneration conditions broadly across species. Fire alone, however, was not enough to promote fire-adapted composition, with concurrent mechanical treatments creating more favorable conditions for promoting colonization and increasing abundances of fire-tolerant ponderosa pine. Yet, even with repeated fuel treatment application, establishment of fire-intolerant species far exceeded that of fire-tolerant species over this 20-year study period. Moreover, increasing growing season water stress negatively impacted seedling dynamics across all species regardless of treatment type and intensity, an important consideration for ongoing management under heightened climatic stress. While repeated treatments are waypoints in restoring fire-adapted conditions, more intense treatments via gap-creation or hotter prescribed fires targeting removal of fire-intolerant species will be necessary to sustain recruitment of fire-tolerant species.
引用
收藏
页数:24
相关论文
共 145 条
[1]  
Addington R.N., 2018, Principles and practices for the restoration of ponderosa pine and dry mixed-conifer forests of the Colorado Front Range (No. RMRS-GTR-373)., DOI [10.2737/RMRS-GTR-373, DOI 10.2737/RMRS-GTR-373, 10.2737/ RMRS-GTR-373]
[2]   Unravelling the influence of light, litter and understorey vegetation on Pinus pinea natural regeneration [J].
Adili, Boutheina ;
El Aouni, Mohamed Hedi ;
Balandier, Philippe .
FORESTRY, 2013, 86 (03) :297-304
[3]   Basic principles of forest fuel reduction treatments [J].
Agee, JK ;
Skinner, CN .
FOREST ECOLOGY AND MANAGEMENT, 2005, 211 (1-2) :83-96
[4]  
[Anonymous], 2017, SSURGO Web Soil Survey
[5]   A forest reconstruction model to assess changes to Sierra Nevada mixed-conifer forest during the fire suppression era [J].
Barth, Molly A. F. ;
Larson, Andrew J. ;
Lutz, James A. .
FOREST ECOLOGY AND MANAGEMENT, 2015, 354 :104-118
[6]   Can prescribed fire be used to maintain fuel treatment effectiveness over time in Black Hills ponderosa pine forests? [J].
Battaglia, Mike A. ;
Smith, Frederick W. ;
Shepperd, Wayne D. .
FOREST ECOLOGY AND MANAGEMENT, 2008, 256 (12) :2029-2038
[7]   Differences in regeneration niche mediate how disturbance severity and microclimate affect forest species composition [J].
Becker, Kendall M. L. ;
Lutz, James A. .
FOREST ECOLOGY AND MANAGEMENT, 2023, 544
[8]   Can low-severity fire reverse compositional change in montane forests of the Sierra Nevada, California, USA? [J].
Becker, Kendall M. L. ;
Lutz, James A. .
ECOSPHERE, 2016, 7 (12)
[9]  
Bigelow SW, 2011, CAN J FOREST RES, V41, P2051, DOI [10.1139/X11-120, 10.1139/x11-120]
[10]   Generalized linear mixed models: a practical guide for ecology and evolution [J].
Bolker, Benjamin M. ;
Brooks, Mollie E. ;
Clark, Connie J. ;
Geange, Shane W. ;
Poulsen, John R. ;
Stevens, M. Henry H. ;
White, Jada-Simone S. .
TRENDS IN ECOLOGY & EVOLUTION, 2009, 24 (03) :127-135