Advancing precision cancer immunotherapy drug development, administration, and response prediction with AI-enabled Raman spectroscopy

被引:2
作者
Chadokiya, Jay [1 ]
Chang, Kai [2 ]
Sharma, Saurabh [1 ]
Hu, Jack [3 ]
Lill, Jennie R. [4 ]
Dionne, Jennifer [3 ,5 ,6 ]
Kirane, Amanda [1 ]
机构
[1] Stanford Univ, Stanford Sch Med, Dept Surg, Med Ctr, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA USA
[3] Pumpkinseed Technol, Palo Alto, CA 94306 USA
[4] Genentech Inc, South San Francisco, CA USA
[5] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Radiol, Mol Imaging Program Stanford MIPS, Sch Med, Stanford, CA 94305 USA
关键词
Raman spectroscopy; label-free analysis; immunotherapy; time analysis; multiomics; SURFACE-ENHANCED RAMAN; PD-L1; EXPRESSION; CELL-DEATH; SPECTRA; BIOMARKERS; PERSPECTIVE; ASSOCIATION; METABOLISM; ACTIVATION; MECHANISMS;
D O I
10.3389/fimmu.2024.1520860
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Molecular characterization of tumors is essential to identify predictive biomarkers that inform treatment decisions and improve precision immunotherapy development and administration. However, challenges such as the heterogeneity of tumors and patient responses, limited efficacy of current biomarkers, and the predominant reliance on single-omics data, have hindered advances in accurately predicting treatment outcomes. Standard therapy generally applies a "one size fits all" approach, which not only provides ineffective or limited responses, but also an increased risk of off-target toxicities and acceleration of resistance mechanisms or adverse effects. As the development of emerging multi- and spatial-omics platforms continues to evolve, an effective tumor assessment platform providing utility in a clinical setting should i) enable high-throughput and robust screening in a variety of biological matrices, ii) provide in-depth information resolved with single to subcellular precision, and iii) improve accessibility in economical point-of-care settings. In this perspective, we explore the application of label-free Raman spectroscopy as a tumor profiling tool for precision immunotherapy. We examine how Raman spectroscopy's non-invasive, label-free approach can deepen our understanding of intricate inter- and intra-cellular interactions within the tumor-immune microenvironment. Furthermore, we discuss the analytical advances in Raman spectroscopy, highlighting its evolution to be utilized as a single "Raman-omics" approach. Lastly, we highlight the translational potential of Raman for its integration in clinical practice for safe and precise patient-centric immunotherapy.
引用
收藏
页数:22
相关论文
共 185 条
[41]   Very-large-scale integrated high quality factor nanoantenna pixels [J].
Dolia, Varun ;
Balch, Halleh B. ;
Dagli, Sahil ;
Abdollahramezani, Sajjad ;
Delgado, Hamish Carr ;
Moradifar, Parivash ;
Chang, Kai ;
Stiber, Ariel ;
Safir, Fareeha ;
Lawrence, Mark ;
Hu, Jack ;
Dionne, Jennifer A. .
NATURE NANOTECHNOLOGY, 2024, 19 (09) :1290-1298
[42]   Use of Handheld Raman Spectroscopy for Intraoperative Differentiation of Normal Brain Tissue From Intracranial Neoplasms in Dogs [J].
Doran, Caitlin E. ;
Frank, Chad B. ;
McGrath, Stephanie ;
Packer, Rebecca A. .
FRONTIERS IN VETERINARY SCIENCE, 2022, 8
[43]   Diagnoses in multiple types of cancer based on serum Raman spectroscopy combined with a convolutional neural network: Gastric cancer, colon cancer, rectal cancer, lung cancer [J].
Du, Yu ;
Hu, Lin ;
Wu, Guohua ;
Tang, Yishu ;
Cai, Xiongwei ;
Yin, Longfei .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2023, 298
[44]   Targeting macrophages in cancer immunotherapy [J].
Duan, Zhaojun ;
Luo, Yunping .
SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2021, 6 (01)
[45]   Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity [J].
Dulak, Austin M. ;
Stojanov, Petar ;
Peng, Shouyong ;
Lawrence, Michael S. ;
Fox, Cameron ;
Stewart, Chip ;
Bandla, Santhoshi ;
Imamura, Yu ;
Schumacher, Steven E. ;
Shefler, Erica ;
McKenna, Aaron ;
Carter, Scott L. ;
Cibulskis, Kristian ;
Sivachenko, Andrey ;
Saksena, Gordon ;
Voet, Douglas ;
Ramos, Alex H. ;
Auclair, Daniel ;
Thompson, Kristin ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Guiducci, Candace ;
Beroukhim, Rameen ;
Zhou, Zhongren ;
Lin, Lin ;
Lin, Jules ;
Reddy, Rishindra ;
Chang, Andrew ;
Landrenau, Rodney ;
Pennathur, Arjun ;
Ogino, Shuji ;
Luketich, James D. ;
Golub, Todd R. ;
Gabriel, Stacey B. ;
Lander, Eric S. ;
Beer, David G. ;
Godfrey, Tony E. ;
Getz, Gad ;
Bass, Adam J. .
NATURE GENETICS, 2013, 45 (05) :478-U37
[46]   Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination [J].
Duraipandian, Shiyamala ;
Bergholt, Mads Sylvest ;
Zheng, Wei ;
Ho, Khek Yu ;
Teh, Ming ;
Yeoh, Khay Guan ;
So, Jimmy Bok Yan ;
Shabbir, Asim ;
Huang, Zhiwei .
JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (08)
[47]   Deep learning in cancer pathology: a new generation of clinical biomarkers [J].
Echle, Amelie ;
Rindtorff, Niklas Timon ;
Brinker, Titus Josef ;
Luedde, Tom ;
Pearson, Alexander Thomas ;
Kather, Jakob Nikolas .
BRITISH JOURNAL OF CANCER, 2021, 124 (04) :686-696
[48]  
Eggermont Alexander M M, 2018, Am Soc Clin Oncol Educ Book, V38, P197, DOI 10.1200/EDBK_201131
[49]   Tumor Heterogeneity: A Great Barrier in the Age of Cancer Immunotherapy [J].
El-Sayes, Nader ;
Vito, Alyssa ;
Mossman, Karen .
CANCERS, 2021, 13 (04) :1-14
[50]   The state-of-play and future of antibody therapeutics [J].
Elgundi, Zehra ;
Reslan, Mouhamad ;
Cruz, Esteban ;
Sifniotis, Vicki ;
Kayser, Veysel .
ADVANCED DRUG DELIVERY REVIEWS, 2017, 122 :2-19