Vertex-critical graphs far from edge-criticality

被引:0
作者
Martinsson, Anders [1 ]
Steiner, Raphael [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Theoret Comp Sci, Dept Comp Sci, Zurich, Switzerland
关键词
Chromatic number; colour-critical graphs; hypergraphs; probabilistic method;
D O I
10.1017/S0963548324000324
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let $r$ be any positive integer. We prove that for every sufficiently large $k$ there exists a $k$ -chromatic vertex-critical graph $G$ such that $\chi (G-R)=k$ for every set $R \subseteq E(G)$ with $|R|\le r$ . This partially solves a problem posed by Erd & odblac;s in 1985, who asked whether the above statement holds for $k \ge 4$ .
引用
收藏
页码:151 / 157
页数:7
相关论文
共 12 条
[1]   A VERTEX CRITICAL GRAPH WITHOUT CRITICAL EDGES [J].
BROWN, JI .
DISCRETE MATHEMATICS, 1992, 102 (01) :99-101
[2]  
Chung F., 2012, ONLINE DATABASE ERDO
[3]  
Chung F., 1998, ERDS GRAPHS HIS LEGA
[4]  
Erds P., 1985, GRAPH THEORY MEMORY, P111
[5]  
Jensen T. R., 1996, PHD THESIS
[6]  
Jensen Tommy R., 1995, Graph Coloring Problems
[7]   Dense critical and vertex-critical graphs [J].
Jensen, TR .
DISCRETE MATHEMATICS, 2002, 258 (1-3) :63-84
[8]   Factors in random graphs [J].
Johansson, Anders ;
Kahn, Jeff ;
Vu, Van .
RANDOM STRUCTURES & ALGORITHMS, 2008, 33 (01) :1-28
[9]   Asymptotics for Shamir's problem [J].
Kahn, Jeff .
ADVANCES IN MATHEMATICS, 2023, 422
[10]   A note on a conjecture of Dirac [J].
Lattanzio, JJ .
DISCRETE MATHEMATICS, 2002, 258 (1-3) :323-330