Perspective Lattice physics approaches for neural networks

被引:1
作者
Bardella, Giampiero [1 ]
Franchini, Simone [1 ]
Pani, Pierpaolo [1 ]
Ferraina, Stefano [1 ]
机构
[1] Sapienza Univ Rome, Dept Physiol & Pharmacol, Rome, Italy
关键词
FREE-ENERGY PRINCIPLE; SPIN-GLASS MODEL; RENORMALIZATION-GROUP; CORTICAL COLUMN; FIELD-THEORY; DYNAMICS; CONNECTIVITY; CORTEX; COMPUTATION; NEURONS;
D O I
10.1016/j.isci.2024.111390
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Modern neuroscience has evolved into a frontier field that draws on numerous disciplines, resulting in the flourishing of novel conceptual frames primarily inspired by physics and complex systems science. Contributing in this direction, we recently introduced a mathematical framework to describe the spatiotemporal interactions of systems of neurons using lattice field theory, the reference paradigm for theoretical particle physics. In this note, we provide a concise summary of the basics of the theory, aiming to be intuitive to the interdisciplinary neuroscience community. We contextualize our methods, illustrating how to readily connect the parameters of our formulation to experimental variables using well-known renormalization procedures. This synopsis yields the key concepts needed to describe neural networks using lattice physics. Such classes of methods are attention-worthy in an era of blistering improvements in numerical computations, as they can facilitate relating the observation of neural activity to generative models underpinned by physical principles.
引用
收藏
页数:15
相关论文
共 186 条
  • [41] The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields
    Deco, Gustavo
    Jirsa, Viktor K.
    Robinson, Peter A.
    Breakspear, Michael
    Friston, Karl J.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (08)
  • [42] Deutsch D, 2004, Arxiv, DOI [arXiv:quant-ph/0401024, 10.48550/arXiv.quant-ph/0401024, DOI 10.48550/ARXIV.QUANT-PH/0401024]
  • [43] ON MICROSCOPIC FOUNDATION OF SCALING LAWS
    DICASTRO, C
    JONALASI.G
    [J]. PHYSICS LETTERS A, 1969, A 29 (06) : 322 - &
  • [44] Dick M, 2024, Arxiv, DOI [arXiv:2309.14973, 10.1103/PhysRevResearch.6.033264, DOI 10.1103/PHYSREVRESEARCH.6.033264]
  • [45] Doucet D, 1996, ENTOMOL EXP APPL, V81, P21, DOI 10.1007/BF00187834
  • [46] Real-space renormalization in statistical mechanics
    Efrati, Efi
    Wang, Zhe
    Kolan, Amy
    Kadanoff, Leo P.
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (02) : 647 - 669
  • [47] Rendering neuronal state equations compatible with the principle of stationary action
    Fagerholm, Erik D.
    Foulkes, W. M. C.
    Friston, Karl J.
    Moran, Rosalyn J.
    Leech, Robert
    [J]. JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2021, 11 (01):
  • [48] Optimized brute-force algorithms for the bifurcation analysis of a binary neural network model
    Fasoli, Diego
    Panzeri, Stefano
    [J]. PHYSICAL REVIEW E, 2019, 99 (01)
  • [49] The Complexity of Dynamics in Small Neural Circuits
    Fasoli, Diego
    Cattani, Anna
    Panzeri, Stefano
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (08)
  • [50] Feynman R. P., 2005, Feynman's Thesis-A New Approach to Quantum Theory