Hamilton cycles in vertex-transitive graphs of order 6p

被引:0
|
作者
Du, Shaofei [1 ]
Zhou, Tianlei [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Vertex-transitive graph; Hamilton cycle; Automorphism group; Orbital graph; CAYLEY-GRAPHS; COMMUTATOR SUBGROUP; SYMMETRICAL GRAPHS; PERMUTATION-GROUPS; PATHS; DIGRAPHS; PRODUCT; ODD; PQ;
D O I
10.1016/j.dam.2025.02.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It was shown by Kutnar and & Scaron;parl in 2009 that every connected vertex-transitive graph of order 6p, where pis a prime, contains a Hamilton path. In this paper, it will be shown that every such graph contains a Hamilton cycle, except for the Petersen graph by replacing each vertex by a triangle. (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:165 / 175
页数:11
相关论文
共 50 条
  • [21] On cubic non-Cayley vertex-transitive graphs
    Kutnar, Klavdija
    Marusic, Dragan
    Zhang, Cui
    JOURNAL OF GRAPH THEORY, 2012, 69 (01) : 77 - 95
  • [22] Hamiltonicity of certain vertex-transitive graphs revisited
    Kutnar, Klavdija
    Marusic, Dragan
    Razafimahatratra, Andriaherimanana Sarobidy
    DISCRETE MATHEMATICS, 2025, 348 (04)
  • [23] Cubic Vertex-Transitive Graphs of Order 2pq
    Zhou, Jin-Xin
    Feng, Yan-Quan
    JOURNAL OF GRAPH THEORY, 2010, 65 (04) : 285 - 302
  • [24] Tetravalent Vertex-Transitive Graphs of Order Twice A Prime Square
    Huiwen Cheng
    Mohsen Ghasemi
    Sha Qiao
    Graphs and Combinatorics, 2016, 32 : 1763 - 1771
  • [25] A list for vertex-primitive symmetric graphs of order 6p
    Wu, Xiaofang
    Zhao, Yan
    ARS COMBINATORIA, 2016, 126 : 65 - 72
  • [26] Cubic vertex-transitive non-Cayley graphs of order 12p
    Zhang, Wei-Juan
    Feng, Yan-Quan
    Zhou, Jin-Xin
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (06) : 1153 - 1162
  • [27] Vertex-transitive Diameter Two Graphs
    Wei Jin
    Li Tan
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 209 - 222
  • [28] Cubic vertex-transitive non-Cayley graphs of order 8p
    Zhou, Jin-Xin
    Fang, Yan-Quan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01)
  • [29] A census of small transitive groups and vertex-transitive graphs
    Holt, Derek
    Royle, Gordon
    JOURNAL OF SYMBOLIC COMPUTATION, 2020, 101 : 51 - 60
  • [30] On Isomorphisms of Vertex-transitive Graphs
    Chen, Jing
    Xia, Binzhou
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02)