Tumor metastasis and recurrence: The role of perioperative NETosis

被引:0
作者
Zeng, Fu [1 ,2 ]
Shao, Yuwen [1 ,2 ]
Wu, Jingyi [3 ]
Luo, Jingwen [1 ,2 ]
Yue, Ying [1 ,2 ]
Shen, Yang [1 ,2 ]
Wang, Yanghanzhao [1 ,2 ]
Shi, Yuxin [1 ,2 ]
Wu, Dan [1 ,2 ]
Cata, Juan P. [5 ,6 ]
Yang, Shuofei [4 ]
Zhang, Hao [1 ,2 ]
Miao, Changhong [1 ,2 ]
机构
[1] Fudan Univ, Zhongshan Hosp, Dept Anesthesiol, 180 Fenglin Rd, Shanghai 20032, Peoples R China
[2] Shanghai Key Lab Perioperat Stress & Protect, Shanghai, Peoples R China
[3] Fudan Univ, Zhongshan Hosp Xiamen, Dept Anesthesiol, Xiamen, Peoples R China
[4] Shanghai Jiao Tong Univ, Renji Hosp, Sch Med, Dept Vasc Surg, Pujian Rd 160, Shanghai 200127, Peoples R China
[5] Univ Texas MD Anderson Canc Ctr, Dept Anesthesiol & Perioperat Med, Houston, TX USA
[6] Anesthesiol & Surg Oncol Res Grp, Houston, TX USA
基金
中国国家自然科学基金;
关键词
Neutrophil extracellular traps; NETosis; Tumor; Surgery; Metastasis; NEUTROPHIL EXTRACELLULAR TRAPS; PROCOAGULANT ACTIVITY; MITOCHONDRIAL-DNA; CANCER-CELLS; PROMOTE; PLATELETS; RELEASE; PROGRESSION; ACTIVATION; CONTRIBUTE;
D O I
10.1016/j.canlet.2024.217413
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Although surgical resection of tumor mass remains the mainstay of curative therapeutic management for solid tumors, accumulating studies suggest that these procedures promote tumor recurrence and metastasis. Regarded as the first immune cells to fight against infectious or inflammatory insults from surgery, neutrophils along with their ability of neutrophil extracellular traps (NETs) production has attracted much attention. A growing body of evidence suggests that NETs promote cancer metastasis by stimulating various stages, including local invasion, colonization, and growth. Therefore, we discussed the mechanism of NETosis induced by surgical stress and tumor cells, and the contribution of NETs on tumor metastasis: aid in the tumor cell migration and proliferation, evasion of immune surveillance, circulating tumor cell adhesion and establishment of a metastatic niche. Lastly, we summarized existing NET-targeting interventions, offering recent insights into potential targets for clinical intervention.
引用
收藏
页数:15
相关论文
共 187 条
[71]   Neutrophil extracellular traps enhance procoagulant activity in patients with oral squamous cell carcinoma [J].
Li, Baorong ;
Liu, Yingmiao ;
Hu, Tenglong ;
Zhang, Yan ;
Zhang, Cong ;
Li, Tao ;
Wang, Chunxu ;
Dong, Zengxiang ;
Novakovic, Valerie A. ;
Hu, Tianshui ;
Shi, Jialan .
JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2019, 145 (07) :1695-1707
[72]   Neutrophil extracellular traps induced by the hypoxic microenvironment in gastric cancer augment tumour growth [J].
Li, Jiacheng ;
Xia, Yu ;
Sun, Biying ;
Zheng, Nanbei ;
Li, Yang ;
Pang, Xuehan ;
Yang, Fan ;
Zhao, Xingwang ;
Ji, Zhiwu ;
Yu, Haitao ;
Chen, Fujun ;
Zhang, Xuemei ;
Zhao, Bin ;
Jin, Jiaqi ;
Yang, Shifeng ;
Cheng, Zhuoxin .
CELL COMMUNICATION AND SIGNALING, 2023, 21 (01)
[73]   A Novel Peptidylarginine Deiminase 4 (PAD4) Inhibitor BMS-P5 Blocks Formation of Neutrophil Extracellular Traps and Delays Progression of Multiple Myeloma [J].
Li, Marina ;
Lin, Cindy ;
Deng, Hui ;
Strnad, Joann ;
Bernabei, Luca ;
Vogl, Dan T. ;
Burke, James J. ;
Nefedova, Yulia .
MOLECULAR CANCER THERAPEUTICS, 2020, 19 (07) :1530-1538
[74]   Targeting NETosis: nature's alarm system in cancer progression [J].
Liang, Yixia ;
Wu, Guo ;
Tan, Jiabao ;
Xiao, Xiaoyuan ;
Yang, Linbin ;
Saw, Phei Er .
CANCER DRUG RESISTANCE, 2024, 7
[75]   BCG-induced formation of neutrophil extracellular traps play an important role in bladder cancer treatment [J].
Liu, Kangkang ;
Sun, Erlin ;
Lei, Mingde ;
Li, Limin ;
Gao, Jingda ;
Nian, Xuewu ;
Wang, Lining .
CLINICAL IMMUNOLOGY, 2019, 201 :4-14
[76]   Induction of neutrophil extracellular traps during tissue injury: Involvement of STING and Toll-like receptor 9 pathways [J].
Liu, Li ;
Mao, Ye ;
Xu, Bocheng ;
Zhang, Xiangxian ;
Fang, Chunju ;
Ma, Yu ;
Men, Ke ;
Qi, Xiaorong ;
Yi, Tao ;
Wei, Yuquan ;
Wei, Xiawei .
CELL PROLIFERATION, 2019, 52 (03)
[77]   Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease [J].
Lood, Christian ;
Blanco, Luz P. ;
Purmalek, Monica M. ;
Carmona-Rivera, Carmelo ;
De Ravin, Suk S. ;
Smith, Carolyne K. ;
Malech, Harry L. ;
Ledbetter, Jeffrey A. ;
Elkon, Keith B. ;
Kaplan, Mariana J. .
NATURE MEDICINE, 2016, 22 (02) :146-153
[78]   The systemic immune response to trauma: an overview of pathophysiology and treatment [J].
Lord, Janet M. ;
Midwinter, Mark J. ;
Chen, Yen-Fu ;
Belli, Antonio ;
Brohi, Karim ;
Kovacs, Elizabeth J. ;
Koenderman, Leo ;
Kubes, Paul ;
Lilford, Richard J. .
LANCET, 2014, 384 (9952) :1455-1465
[79]   High-mobility group box 1 potentiates antineutrophil cytoplasmic antibody-inducing neutrophil extracellular traps formation [J].
Ma, Yun-Hua ;
Ma, Tian-tian ;
Wang, Chen ;
Wang, Huan ;
Chang, Dong-Yuan ;
Chen, Min ;
Zhao, Ming-Hui .
ARTHRITIS RESEARCH & THERAPY, 2016, 18
[80]   Mitochondrial DNA Stimulates TLR9-Dependent Neutrophil Extracellular Trap Formation in Primary Graft Dysfunction [J].
Mallavia, Benat ;
Liu, Fengchun ;
Lefrancais, Emma ;
Cleary, Simon J. ;
Kwaan, Nicholas ;
Tian, Jennifer J. ;
Magnen, Melia ;
Sayah, David M. ;
Soong, Allison ;
Chen, Joy ;
Saggar, Rajan ;
Shino, Michael Y. ;
Ross, David J. ;
Derhovanessian, Ariss ;
Lynch, Joseph P. ;
Ardehali, Abbas ;
Weigt, S. Sam ;
Belperio, John A. ;
Hays, Steven R. ;
Golden, Jeffrey A. ;
Leard, Lorriana E. ;
Shah, Rupal J. ;
Kleinhenz, Mary Ellen ;
Venado, Aida ;
Kukreja, Jasleen ;
Singer, Jonathan P. ;
Looney, Mark R. .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2020, 62 (03) :364-372