Using hydrological modelling to improve the Fire Weather Index system over tropical peatlands of peninsular Malaysia, Sumatra and Borneo

被引:0
作者
Mortelmans, J. [1 ]
Apers, S. [1 ]
De Lannoy, G. J. M. [1 ]
Veraverbeke, S. [2 ,3 ]
Field, R. D. [4 ,5 ]
Andela, N. [6 ]
Page, S. E. [7 ]
Bechtold, M. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Earth & Environm Sci, Kasteelpk Arenberg 20, B-3001 Heverlee, Belgium
[2] Vrije Univ Amsterdam, Dept Earth Sci, Boelelaan 1100, NL-1081 HV Amsterdam, Netherlands
[3] Univ East Anglia, Sch Environm Sci, Norwich, England
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[5] NASA, Goddard Inst Space Studies, New York, NY USA
[6] BeZero Carbon, London, England
[7] Univ Leicester, Sch Geog Geol & Environm, Univ Rd, Leicester LE1 7RH, England
基金
比利时弗兰德研究基金会;
关键词
Fire Weather Index; FWI; Groundwater table; hydrological data; PEATCLSM; peatland fires; southeast Asia; SMOLDERING PEAT FIRES; ACACIA PLANTATION; BURNED AREA; CARBON LOSS; EMISSIONS; VARIABILITY; SUBSIDENCE; ALGORITHM; MOISTURE; WILDFIRE;
D O I
10.1071/WF24057
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Background Tropical peatland fires contribute to global carbon emissions and air pollution.Aims Enhance the globally used Canadian Fire Weather Index (FWI) system specifically over drained and undrained tropical peatlands in southeast Asia.Methodology We included simulated tropical peatland hydrology in the FWI, creating a new peatland-specific version of the FWI (FWIpeat). FWIpeat, the original FWI (FWIref) and the drought code (DC) were evaluated against satellite-based active fire occurrence from 2002 to 2018.Key results The DC shows superior performance in explaining fire occurrence over undrained tropical peatlands. Over drained peatlands, DC and FWIpeat show similar results, both outperforming FWIref. A comparison with an earlier study over boreal peatlands indicates much smaller improvements from FWIpeat for tropical peatlands, possibly due to a lower accuracy of the hydrological input data.Conclusions Our results highlight the importance of including information on deeper soil layers, i.e. the DC or groundwater table, when assessing fire danger.Implications Although this study offers a promising approach for operational fire management over tropical peatlands, we emphasise the need for further research to refine the hydrological input data and explore additional constraints from Earth observation data.
引用
收藏
页数:16
相关论文
共 81 条
  • [1] Abatzoglou JT, Williams AP, Boschetti L, Zubkova M, Kolden CA, Global patterns of interannual climate-fire relationships, Global Change Biology, 24, 11, pp. 5164-5175, (2018)
  • [2] Ambadan JT, Oja M, Gedalof Z, Berg AA, Satellite-observed soil moisture as an indicator of wildfire risk, Remote Sensing, 12, 10, (2020)
  • [3] Andela N, Morton DC, Giglio L, Paugam R, Chen Y, Hantson S, Van Der Werf GR, Anderson JT, The Global Fire Atlas of individual fire size, duration, speed and direction, Earth System Science Data, 11, 2, pp. 529-552, (2019)
  • [4] Apers S, De Lannoy GJM, Baird AJ, Cobb AR, Dargie GC, del Aguila Pasquel J, Gruber A, Hastie A, Hidayat H, Hirano T, Hoyt AM, Jovani-Sancho AJ, Katimon A, Kurnain A, Koster RD, Lampela M, Mahanama SPP, Melling L, Page SE, Et al., Tropical peatland hydrology simulated with a global land surface model, Journal of Advances in Modeling Earth Systems, 14, 3, (2022)
  • [5] Bechtold M, De Lannoy GJM, Koster RD, Reichle RH, Mahanama SP, Bleuten W, Bourgault MA, Brummer C, Burdun I, Desai AR, Devito K, Grunwald T, Grygoruk M, Humphreys ER, Klatt J, Kurbatova J, Lohila A, Munir TM, Nilsson MB, Et al., PEAT-CLSM: a specific treatment of peatland hydrology in the NASA Catchment Land Surface Model, Journal of Advances in Modeling Earth Systems, 11, 7, pp. 2130-2162, (2019)
  • [6] Bechtold M, De Lannoy GJM, Reichle RH, Roose D, Balliston N, Burdun I, Devito K, Kurbatova J, Strack M, Zarov EA, Improved groundwater table and L-band brightness temperature estimates for northern hemisphere peatlands using new model physics and SMOS observations in a global data assimilation framework, Remote Sensing of Environment, 246, (2020)
  • [7] Sistem Peringatan Kebakaran Hutan Dan Lahan, (2024)
  • [8] Burdun I, Bechtold M, Sagris V, Komisarenko V, De Lannoy G, Mander U, A comparison of three trapezoid models using optical and thermal satellite imagery for water table depth monitoring in Estonian bogs, Remote Sensing, 12, 12, (2020)
  • [9] Burdun I, Bechtold M, Sagris V, Lohila A, Humphreys E, Desai AR, Nilsson MB, De Lannoy G, Mander U, Satellite determination of peatland water table temporal dynamics by localizing representative pixels of a SWIR-based moisture index, Remote Sensing, 12, 18, (2020)
  • [10] Burdun I, Bechtold M, Aurela M, De Lannoy G, Desai AR, Humphreys E, Kareksela S, Komisarenko V, Liimatainen M, Marttila H, Minkkinen K, Nilsson MB, Ojanen P, Salko SS, Tuittila ES, Uuemaa E, Rautiainen M, Hidden becomes clear: optical remote sensing of vegetation reveals water table dynamics in northern peatlands, Remote Sensing of Environment, 296, (2023)