Multiscale modeling of viscoelastic shell structures with artificial neural networks

被引:0
|
作者
Geiger, Jeremy [1 ]
Wagner, Werner [1 ]
Freitag, Steffen [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Struct Anal, Kaiserstr 12, D-76131 Karlsruhe, Germany
关键词
Multiscale modeling; Shell structures; Artificial neural networks; Viscoelasticity; Sobolev training; Finite element method; COMPUTATIONAL HOMOGENIZATION; CONSTITUTIVE MODEL; BEHAVIOR; SOLIDS;
D O I
10.1007/s00466-025-02613-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For acquiring the effective response of structures with complex underlying microscopic properties, numerical homogenization schemes have widely been studied in the past decades. In this paper, an artificial neural network (ANN) is trained on effective viscoelastic strain-stress data, which is numerically acquired from a consistent homogenization scheme for shell representative volume elements (RVE). The ANN serves as a feasible surrogate model to overcome the bottleneck of the computationally expensive calculation of the coupled multiscale problem. We show that an ANN can be trained solely on uniaxial strain-stress data gathered from creep and relaxation tests, as well as cyclic loading scenarios on an RVE. Furthermore, the amount of data is reduced by including derivative information into the ANN training process, formally known as Sobolev training. Studies at the material point level reveal, that the ANN material model is capable of approximating arbitrary multiaxial stress-strain states, as well as unknown loading paths. Lastly, the material model is implemented into a finite element program, where the potential of the approach in comparison with multiscale and full-scale 3D solutions is analyzed within challenging numerical examples.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Counter propagation artificial neural networks modeling of an enantioselectivity of artificial metalloenzymes
    Sylwester Mazurek
    Thomas R. Ward
    Marjana Novič
    Molecular Diversity, 2007, 11 : 141 - 152
  • [22] Counter propagation artificial neural networks modeling of an enantioselectivity of artificial metalloenzymes
    Mazurek, Sylwester
    Ward, Thomas R.
    Novic, Marjana
    MOLECULAR DIVERSITY, 2007, 11 (3-4) : 141 - 152
  • [23] Lime softening clarifier modeling with artificial neural networks
    Shariff, R
    Cudrak, A
    Stanley, SJ
    JOURNAL OF ENVIRONMENTAL ENGINEERING AND SCIENCE, 2004, 3 : S69 - S80
  • [24] Artificial neural networks as a tool of modeling of training loads
    Rygula, I
    MODELLING AND CONTROL IN BIOMEDICAL SYSTEMS 2003 (INCLUDING BIOLOGICAL SYSTEMS), 2003, : 531 - 535
  • [25] Artificial neural networks based modeling for pharmacoeconomics application
    Polak, Sebastian
    Skowron, Agnieszka
    Brandys, Jerzy
    Mendyk, Aleksander
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (02) : 482 - 492
  • [26] Modeling the teacher job satisfaction by artificial neural networks
    Bang Won Seok
    Kuk-hoan Wee
    Ju-young Park
    D. Anil Kumar
    N. S. Reddy
    Soft Computing, 2021, 25 : 11803 - 11815
  • [27] Artificial neural networks as a tool of modeling of training loads
    Rygula, Igor
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 2985 - 2988
  • [28] Advances in Artificial Neural Networks for Electromagnetic Parameterized Modeling
    Zhang, Qi-Jun
    Feng, Feng
    Na, Weicong
    2021 13TH GLOBAL SYMPOSIUM ON MILLIMETER-WAVES & TERAHERTZ (GSMM), 2021,
  • [29] Cutting force modeling using artificial neural networks
    Szecsi, T
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1999, 93 : 344 - 349
  • [30] Modeling and prediction of chaotic systems with artificial neural networks
    Woolley, Jonathan W.
    Agarwal, P. K.
    Baker, John
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 63 (08) : 989 - 1004