The modulation of the electronic properties of MoSi2N4/CdS heterostructure by interlayer spacing, strain, and electric field: A first-principles investigations

被引:0
|
作者
Wang, Xuewen [1 ]
Ahmad, Syed Awais [1 ]
Hilal, Muhammad [2 ]
Zhang, Weibin [1 ]
机构
[1] Yunnan Normal Univ, Coll Phys & Elect Informat, Yunnan Key Lab Optoelect Informat Technol, Key Lab Adv Tech & Preparat Renewable Energy Mat,M, Kunming 650500, Peoples R China
[2] Sejong Univ, Dept Semicond Syst Engn, Seoul 05006, South Korea
基金
中国国家自然科学基金;
关键词
Biaxial strain; Interlayer spacing; External electric field; VAPOR-DEPOSITION; CDS; PHOTOCATALYSTS; MONOLAYER;
D O I
10.1016/j.cjph.2025.02.014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, the variation in the electronic properties of the MoSi2N4/CdS heterostructure with interlayer spacing, strain, and external electric field are investigated using first-principles methods. The MoSi2N4/CdS heterostructure is an indirect bandgap semiconductor with a band gap of 1.31 eV, work function of 5.45 eV, and Type II band edge alignment. As the interlayer spacing decreases, when DZ-D (the difference between the actual interlayer spacing DZ and the equilibrium spacing D = 3.2 & Aring;) is -0.5 & Aring;, the band gap increases to a maximum value of 1.55 eV. Then, the band gap gradually decreases to 0 eV at DZ-D = -1.5 & Aring;. When the compressive strain increases, the band gap increases to a maximum value of 1.93 eV at a stress of -4%, then gradually decreases to 1.28 eV. When an external electric field is applied, the band gap decreases to 0.68 eV with an increased positive electric field (MoSi2N4 layer pointing perpendicularly to the CdS layer). However, with a negative electric field, the band gap increases to the maximum value of 1.7 eV at the electric field strength of -0.3 V/& Aring;, gradually decreasing to 0 eV. Based on the electron density difference, the density of state, projected band structure, mechanisms of band gap changes, and band edge alignment variations are analyzed. This paper found that by adjusting the interlayer spacing, applying planar biaxial strain, and applying external electric fields, the band gap and heterostructure type of the MoSi2N4/CdS heterostructure can be effectively tuned, providing theoretical references and new options for applications such as flexible electronic devices and wearable technology.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] Normal compressive strain-induced modulation of electronic and mechanical properties of multilayer MoS2 and Graphene/MoS2 heterostructure: A first-principles study
    Ghobadi, Nayereh
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 111 : 158 - 166
  • [22] Optical and tuning electronic properties of GeC/MoS2 van der Waals heterostructures by electric field and strain: A first-principles study
    Yang, Fei
    Zhuo, Zhenguo
    Han, Junnan
    Cao, Xincheng
    Tao, Yue
    Zhang, Le
    Liu, Wenjin
    Zhu, Ziyue
    Dai, Yuehua
    SUPERLATTICES AND MICROSTRUCTURES, 2021, 156
  • [23] First-principles study of influence of electric field on electronic structure and optical properties of GaN/g-C3N4 heterojunction
    Liu Chen-Xi
    Pang Guo-Wang
    Pan Duo-Qiao
    Shi Lei-Qian
    Zhang Li-Li
    Lei Bo-Cheng
    Zhao Xu-Cai
    Huang Yi-Neng
    ACTA PHYSICA SINICA, 2022, 71 (09)
  • [24] A two-dimensional MoSe2/MoSi2N4 van der Waals heterostructure with high carrier mobility and diversified regulation of its electronic properties
    Cai, Xiaolin
    Zhang, Zhengwen
    Zhu, Yingying
    Lin, Long
    Yu, Weiyang
    Wang, Qin
    Yang, Xuefeng
    Jia, Xingtao
    Jia, Yu
    JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (31) : 10073 - 10083
  • [25] Electronic properties of WS2 and WSe2 monolayers with biaxial strain: A first-principles study
    Muoi, Do
    Nguyen N Hieu
    Huong T T Phung
    Huynh V Phuc
    Amin, B.
    Bui D Hoi
    Nguyen V Hieu
    Le C Nhan
    Chuong V Nguyen
    Le, P. T. T.
    CHEMICAL PHYSICS, 2019, 519 : 69 - 73
  • [26] Tuning the electronic structure of GeC/WS2 van der Waals heterostructure by electric field and strain: A first principles study
    Shi, Jianying
    Ou, Yang
    Mighorato, Max A.
    Wang, Hongyu
    Li, Hui
    Zhang, Yue
    Gu, Yousong
    Zou, Mingqiang
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 160 : 301 - 308
  • [27] Strain effects on the electronic and optical properties of Van der Waals heterostructure MoS2/WS2: A first-principles study
    Farkous, M.
    Bikerouin, M.
    Thuan, Doan, V
    Benhouria, Y.
    El-Yadri, M.
    Feddi, E.
    Erguig, H.
    Dujardin, F.
    Nguyen, Chuong, V
    Hieu, Nguyen, V
    Bui, H. D.
    Hieu, Nguyen N.
    Phuc, Huynh, V
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 116
  • [28] Exploring electronic characteristics of bilayer HfS2 under mechanical strain and external electric field: A first-principles approach
    Bao, Jinlin
    Liu, Guili
    Yang, Lu
    Li, Feng
    Yang, Zhonghua
    Zhang, Guoying
    CHINESE JOURNAL OF PHYSICS, 2024, 89 : 1415 - 1430
  • [29] Tuning the electronic properties of HfSe2/PtSe2 heterostructure using electric field and biaxial strain
    Su JinNan
    Chen JunJie
    Pan Min
    Hu KaiGe
    Wen MinRu
    Xing XiangJun
    Tang ZhenHua
    Wu FuGen
    Nie ZhaoGang
    Dong HuaFeng
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2021, 51 (08)
  • [30] First principles calculations investigation of optoelectronic properties and photocatalytic CO2 reduction of (MoSi2N4)5-n/(MoSiGeN4)n in-plane heterostructures
    Mwankemwa, Nsajigwa
    Wang, Hong-En
    Zhu, Ting
    Fan, Qiang
    Zhang, Fuchun
    Zhang, Weibin
    RESULTS IN PHYSICS, 2022, 37