On a symplectic quantum Howe duality

被引:0
作者
Bodish, Elijah [1 ]
Tubbenhauer, Daniel [2 ]
机构
[1] MIT, Dept Math, Bldg 2,Off 2-178, Cambridge, MA 02139 USA
[2] Univ Sydney, Sch Math & Stat, F07,Off Carslaw 827, Sydney, NSW 2006, Australia
关键词
Quantum Howe duality; Tilting modules; Weyl characters; Canonical bases; Symplectic groups; TILTING MODULES; REPRESENTATIONS; FILTRATIONS; ALGEBRAS; FORMULAS; ANALOG; ROOTS; WEBS;
D O I
10.1007/s00209-025-03680-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a nonsemisimple quantum version of Howe's duality with the rank 2n symplectic and the rank 2 special linear group acting on the exterior algebra of type C. We also discuss the first steps towards the symplectic analog of harmonic analysis on quantum spheres, give character formulas for various fundamental modules, and construct canonical bases of the exterior algebra.
引用
收藏
页数:59
相关论文
共 48 条
  • [1] Adamovich A.M., 1996, Transform. Groups, V1, P1
  • [2] DIAGRAM CATEGORIES FOR Uq-TILTING MODULES AT ROOTS OF UNITY
    Andersen, H. H.
    Tubbenhauer, D.
    [J]. TRANSFORMATION GROUPS, 2017, 22 (01) : 29 - 89
  • [3] CELLULAR STRUCTURES USING Uq-TILTING MODULES
    Andersen, Henning Haahr
    Stroppel, Catharina
    Tubbenhauer, Daniel
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2018, 292 (01) : 21 - 59
  • [4] SEMISIMPLICITY OF HECKE AND (WALLED) BRAUER ALGEBRAS
    Andersen, Henning Haahr
    Stroppel, Catharina
    Tubbenhauer, Daniel
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 103 (01) : 1 - 44
  • [5] REPRESENTATIONS OF QUANTUM ALGEBRAS
    ANDERSEN, HH
    POLO, P
    KEXIN, W
    [J]. INVENTIONES MATHEMATICAE, 1991, 104 (01) : 1 - 59
  • [6] A GEOMETRIC SETTING FOR THE QUANTUM DEFORMATION OF GLN
    BEILINSON, AA
    LUSZTIG, G
    MACPHERSON, R
    [J]. DUKE MATHEMATICAL JOURNAL, 1990, 61 (02) : 655 - 677
  • [7] Braided symmetric and exterior algebras
    Berenstein, Arkady
    Zwicknagl, Sebastian
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (07) : 3429 - 3472
  • [8] DIAMOND LEMMA FOR RING THEORY
    BERGMAN, GM
    [J]. ADVANCES IN MATHEMATICS, 1978, 29 (02) : 178 - 218
  • [9] Bodish E., 2021, arXiv
  • [10] Web calculus and tilting modules in type C2
    Bodish, Elijah
    [J]. QUANTUM TOPOLOGY, 2022, 13 (03) : 407 - 458