Bibliometric analysis of artificial intelligence applications in cardiovascular imaging: trends, impact, and emerging research areas

被引:1
作者
Alotaibi, Abdulhadi [1 ]
Contreras, Rafael [2 ]
Thakker, Nisarg [2 ]
Mahapatro, Abinash [3 ]
Jala, Saisree Reddy Adla [4 ]
Mohanty, Elan [5 ]
Devulapally, Pavan [6 ]
Mirchandani, Mohit [7 ]
Marsool, Mohammed Dheyaa Marsool [8 ]
Jain, Shika M. [9 ]
Joukar, Farahnaz [10 ]
Alizadehasl, Azin [11 ]
Jebelli, Seyedeh Fatemeh Hosseini [11 ]
Amini-Salehi, Ehsan [10 ]
Ameen, Daniyal [2 ]
机构
[1] Vis Coll, Dept Med & Surg, Riyadh 23643, Saudi Arabia
[2] Yale New Haven Hlth Bridgeport Hosp, Dept Internal Med, Bridgeport, CT USA
[3] Hitech Med Coll & Hosp, Rourkela, Odisha, India
[4] Mission Hosp, Asheville, NC USA
[5] Mary Med Ctr Apple Valley, Apple Valley, CA USA
[6] Main Methodist Hosp, San Antonio, TX USA
[7] Montefiore Med Ctr, Wakefield Campus, Scarsdale, NY USA
[8] Mayo Clin, Phoenix, AZ USA
[9] MVJ Med Coll & Res Hosp, Bengaluru, India
[10] Guilan Univ Med Sci, Gastrointestinal & Liver Dis Res Ctr, Rasht, Iran
[11] Iran Univ Med Sci, Rajaie Cardiovasc Med & Res Ctr, Tehran, Iran
关键词
artificial intelligence; bibliometric analysis; cardiac imaging; cardiovascular diseases; deep learning; machine learning; LEFT-VENTRICLE; SEGMENTATION; HEART; AI;
D O I
10.1097/MS9.0000000000003080
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background:The application of artificial intelligence (AI) in cardiac imaging has rapidly evolved, offering enhanced accuracy and efficiency in the diagnosis and management of cardiovascular diseases. This bibliometric study aimed to evaluate research trends, impact, and scholarly output in this expanding field.Methods:A systematic search was conducted on 14 August 2024 using the Web of Science Core Collection database. VOSviewer, CiteSpace, and Biblioshiny were utilized for data analysis.Results:The findings revealed a significant increase in publications on AI in cardiovascular imaging, particularly from 2018 to 2023, with the United States leading in research output. England and the United States have emerged as central hubs in the global research network, highlighting their role in generating high-quality and impactful publications. The University of London was identified as the top contributing institution, while Frontiers in Cardiovascular Medicine was the most prolific journal. Keyword analysis highlighted machine learning, echocardiography, and diagnosis as the most frequently occurring terms. A time trend analysis showed a shift in research focus toward AI applications in cardiac computed tomography (CT) and magnetic resonance imaging (MRI), with recent keywords like ejection fraction, risk, and heart failure reflecting emerging areas of interest.Conclusion:Healthcare providers should consider integrating AI tools into cardiovascular imaging practice, as AI has demonstrated the potential to enhance diagnostic accuracy and improve patient outcomes. This study highlights the rising importance of AI in personalized and predictive cardiovascular care, urging healthcare providers to stay informed about these advancements to enhance clinical decision-making and patient management.
引用
收藏
页码:1947 / 1968
页数:22
相关论文
共 110 条
[1]   Artificial Intelligence-Related Research Funding by the US National Science Foundation and the National Natural Science Foundation of China [J].
Abadi, Hamidreza Habibollahi Najaf ;
He, Zhou ;
Pecht, Michael .
IEEE ACCESS, 2020, 8 :183448-183459
[2]  
Agrawal A, 2024, Arxiv, DOI [arXiv:2305.18248, DOI 10.48550/ARXIV.2305.18248]
[3]   Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging [J].
Akcakaya, Mehmet ;
Moeller, Steen ;
Weingaertner, Sebastian ;
Ugurbil, Kamil .
MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (01) :439-453
[4]   Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging [J].
Al'Aref, Subhi J. ;
Anchouche, Khalil ;
Singh, Gurpreet ;
Slomka, Piotr J. ;
Kolli, Kranthi K. ;
Kumar, Amit ;
Pandey, Mohit ;
Maliakal, Gabriel ;
van Rosendael, Alexander R. ;
Beecy, Ashley N. ;
Berman, Daniel S. ;
Leipsic, Jonathan ;
Nieman, Koen ;
Andreini, Daniele ;
Pontone, Gianluca ;
Schoepf, U. Joseph ;
Shaw, Leslee J. ;
Chang, Hyuk-Jae ;
Narula, Jagat ;
Bax, Jeroen J. ;
Guan, Yuanfang ;
Min, James K. .
EUROPEAN HEART JOURNAL, 2019, 40 (24) :1975-+
[5]   Machine Learning in Cardiology: A Potential Real-World Solution in Low- and Middle-Income Countries [J].
Alabdaljabar, Mohamad S. ;
Hasan, Babar ;
Noseworthy, Peter A. ;
Maalouf, Joseph F. ;
Ammash, Naser M. ;
Hashmi, Shahrukh K. .
JOURNAL OF MULTIDISCIPLINARY HEALTHCARE, 2023, 16 :285-295
[6]   Presentation of mitral valve cleft with concurrent atrial septal defect and ventricular septal defect detected by three-dimensional transesophageal echocardiography: a case report [J].
Alizadehasl, Azin ;
Amini-Salehi, Ehsan ;
Jebelli, Seyedeh Fatemeh Hosseini ;
Hosseini, Kaveh ;
Aliabadi, Azam Yalameh ;
Yazzaf, Rosa ;
Nobakht, Sara .
JOURNAL OF MEDICAL CASE REPORTS, 2024, 18 (01)
[7]   Coronary artery disease detection using artificial intelligence techniques: A survey of trends, geographical differences and diagnostic features 1991-2020 [J].
Alizadehsani, Roohallah ;
Khosravi, Abbas ;
Roshanzamir, Mohamad ;
Abdar, Moloud ;
Sarrafzadegan, Nizal ;
Shafie, Davood ;
Khozeimeh, Fahime ;
Shoeibi, Afshin ;
Nahavandi, Saeid ;
Panahiazar, Maryam ;
Bishara, Andrew ;
Beygui, Ramin E. ;
Puri, Rishi ;
Kapadia, Samir ;
Tan, Ru-San ;
Acharya, U. Rajendra .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 128
[8]   Early Diagnosis of Cardiovascular Diseases in the Era of Artificial Intelligence: An In-Depth Review [J].
Almansouri, Naiela E. ;
Awe, Mishael ;
Rajavelu, Selvambigay ;
Jahnavi, Kudapa ;
Shastry, Rohan ;
Hasan, Ali ;
Hasan, Hadi ;
Lakkimsetti, Mohit ;
Alabbasi, Reem Khalid ;
Gutierrez, Brian Criollo ;
Haider, Ali .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (03)
[9]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[10]  
Analytica O., 2018, Emerald Expert Briefings (oxan-db)