The maximum spectral radii of weighted uniform loose cycles and unicyclic hypergraphs

被引:0
作者
Du, Juanxia [1 ]
Xiao, Peng [1 ]
Xi, Weige [2 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Math & Data Sci, Xian 710021, Shaanxi, Peoples R China
[2] Northwest A&F Univ, Coll Sci, Xianyang 712100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
weighted hypergraphs; loose cycles; unicyclic hypergraphs; spectral radius; SUPERTREES; TENSORS;
D O I
10.2298/FIL2421635D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A weighted k-uniform loose cycle of length m, denoted by C-m,C-k, is a cyclic list of weighted edges e(1), e(2), ... , e(m) such that consecutive edges intersect in exactly one vertex, and nonconsecutive edges are disjoint, where |e(i)| = k for all 1 <= i <= m. For a given positive weight set, we determine the distribution of weights of C-m,C-k with the maximum spectral radius. Moreover, we characterize the unique weighted hypergraph with the maximum spectral radius in the class of all weighted uniform unicyclic hypergraphs with a given positive weight set.
引用
收藏
页码:7635 / 7646
页数:12
相关论文
共 25 条
[1]   The first few unicyclic and bicyclic hypergraphs with largest spectral radii [J].
Chen Ouyang ;
Qi, Liqun ;
Yuan, Xiying .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 527 :141-162
[2]   The (Signless Laplacian) Spectral Radius (Of Subgraphs) of Uniform Hypergraphs [J].
Duan, Cunxiang ;
Wang, Ligong ;
Xiao, Peng ;
Li, Xihe .
FILOMAT, 2019, 33 (15) :4733-4745
[3]   MAXIMIZING SPECTRAL RADII OF UNIFORM HYPERGRAPHS WITH FEW EDGES [J].
Fan, Yi-Zheng ;
Tan, Ying-Ying ;
Peng, Xi-Xi ;
Liu, An-Hong .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (04) :845-856
[4]   Spectral theory of weighted hypergraphs via tensors [J].
Galuppi, Francesco ;
Mulas, Raffaella ;
Venturello, Lorenzo .
LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (03) :317-347
[5]   On the spectral radius of uniform hypertrees [J].
Guo, Haiyan ;
Zhou, Bo .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 558 :236-249
[6]   Spectral radii of two kinds of uniform hypergraphs [J].
Kang, Liying ;
Liu, Lele ;
Qi, Liqun ;
Yuan, Xiying .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 :661-668
[7]   SPECTRAL EXTREMAL PROBLEMS FOR HYPERGRAPHS [J].
Keevash, Peter ;
Lenz, John ;
Mubayi, Dhruv .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (04) :1838-1854
[8]  
Li HH, 2016, J COMB OPTIM, V32, P741, DOI 10.1007/s10878-015-9896-4
[9]  
Lim LH, 2005, IEEE CAMSAP 2005: FIRST INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, P129
[10]  
Liu X. X., 2022, Taiwanese J. Math., V26, P1093