Conceptual Modeling for Polygenic Risk Score Research: Improving Domain Understanding and Clinical Utility

被引:0
作者
Martinez-Minguet, Diana [1 ]
Pastor, Oscar [1 ]
机构
[1] Univ Politecn Valencia, Valencian Res Inst Artificial Intelligence VRAIN, PROS Grp, Cami Vera S-N, Valencia 46022, Spain
来源
ADVANCES IN CONCEPTUAL MODELING, ER 2024 WORKSHOPS | 2025年 / 14932卷
关键词
Polygenic Risk Score; Conceptual Modeling; Healthcare; Precision Medicine;
D O I
10.1007/978-3-031-75599-6_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Polygenic Risk Score (PRS) research domain holds great promise for significant contributions to precision medicine by providing insights into genetic predispositions for common diseases. However, the field faces challenges in terminology standardization and precise conceptualization, which hinder domain comprehension and consequently the effective data management and application in clinical practice. With the aim of providing clarification in domain-specific terms and relationships, in this paper we apply conceptual modeling techniques to the PRS research domain. We develop two conceptual models, one for the definition of a PRS Model and another for defining the PRS Models in context, in order to clarify terminology and disambiguate concepts typically used in studies. Finally, we instantiate a study as a use case which illustrates how the proposed solution clarifies the domain. Our approach enhances domain comprehension and promotes standardization. In addition, it serves for the benchmarking of PRS Models, helping clinicians to better select PRS Models for practical application in clinical settings.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 15 条
[1]  
Babb de Villiers C., 2020, J. Med. Genet., V57
[2]   A Comprehensive Approach for the Conceptual Modeling of Genomic Data [J].
Bernasconi, Anna ;
Garcia S, Alberto ;
Ceri, Stefano ;
Pastor, Oscar .
CONCEPTUAL MODELING (ER 2022), 2022, 13607 :194-208
[3]  
Booch G., 1996, Unix Review, V14, P5
[4]   Tutorial: a guide to performing polygenic risk score analyses [J].
Choi, Shing Wan ;
Mak, Timothy Shin-Heng ;
O'Reilly, Paul F. .
NATURE PROTOCOLS, 2020, 15 (09) :2759-2772
[5]   Calculating Polygenic Risk Scores (PRS) in UK Biobank: A Practical Guide for Epidemiologists [J].
Collister, Jennifer A. ;
Liu, Xiaonan ;
Clifton, Lei .
FRONTIERS IN GENETICS, 2022, 13
[6]  
Garcia A., 2021, IEEE Access PP, V1
[7]   Principles and methods for transferring polygenic risk scores across global populations [J].
Kachuri, Linda ;
Chatterjee, Nilanjan ;
Hirbo, Jibril ;
Schaid, Daniel J. ;
Martin, Iman ;
Kullo, Iftikhar J. ;
Kenny, Eimear E. ;
Pasaniuc, Bogdan ;
Witte, John S. ;
Ge, Tian ;
Auer, Paul L. ;
Chatterjee, Nilanjan ;
Conomos, Matthew P. ;
Conti, David V. ;
Ding, Yi ;
Kachuri, Linda ;
Wang, Ying ;
Zhang, Haoyu ;
Zhang, Yuji .
NATURE REVIEWS GENETICS, 2024, 25 (01) :8-25
[8]   Polygenic risk scores: from research tools to clinical instruments [J].
Lewis, Cathryn M. ;
Vassos, Evangelos .
GENOME MEDICINE, 2020, 12 (01)
[9]   Feature Review Genetic prediction of complex traits with polygenic scores: a statistical review [J].
Ma, Ying ;
Zhou, Xiang .
TRENDS IN GENETICS, 2021, 37 (11) :995-1011
[10]   Polygenic Risk Scores [J].
Osterman, Michael D. ;
Kinzy, Tyler G. ;
Bailey, Jessica N. Cooke .
CURRENT PROTOCOLS, 2021, 1 (05)