Human-centred AI for emergency cardiac care: Evaluating RAPIDx AI with PROLIFERATE_AI

被引:2
作者
Plaza, Maria Alejandra Pinero de [1 ]
Lambrakis, Kristina [2 ,3 ,4 ]
Marmolejo-Ramos, Fernando [1 ]
Beleigoli, Alline [1 ]
Archibald, Mandy [1 ]
Yadav, Lalit [1 ]
Mcmillan, Penelope [5 ]
Clark, Robyn [1 ]
Lawless, Michael [1 ]
Morton, Erin [8 ]
Hendriks, Jeroen [7 ]
Kitson, Alison [1 ]
Visvanathan, Renuka [6 ]
Chew, Derek P. [2 ,3 ,4 ]
Causil, Carlos Javier Barrera [9 ]
机构
[1] Flinders Univ S Australia, Caring Futures Inst, Adelaide, SA, Australia
[2] Monash Univ, Victorian Heart Inst, Melbourne, Vic, Australia
[3] Monash Hlth, MonashHeart, Melbourne, Vic, Australia
[4] Flinders Univ S Australia, Coll Med & Publ Hlth, Adelaide, SA, Australia
[5] South Australian Hlth & Med Res Inst SAHMRI, Myalg Encephalomyelitis Chron Fatigue Syndrome ME, Adelaide, SA, Australia
[6] Univ Adelaide, Fac Hlth & Med Sci, Adelaide Med Sch, Adelaide, SA, Australia
[7] Maastricht Univ, Dept Nursing, Med Ctr, Maastricht, Netherlands
[8] Bespoke Clin Res, Adelaide, SA, Australia
[9] Inst Tecnol Metropolitano, Medellin, Colombia
基金
英国医学研究理事会;
关键词
Artificial intelligence; Emergency medicine; Decision support; Cardiac biomarkers; Usability; Adoption; Human-centred evaluation; STRUCTURED EXPERT ELICITATION; KNOWLEDGE ELICITATION; DECISION-MAKING;
D O I
10.1016/j.ijmedinf.2025.105810
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Background: Chest pain diagnosis in emergency care is hindered by overlapping cardiac and non-cardiac symptoms, causing diagnostic uncertainty. Artificial Intelligence, such as RAPIDx AI, aims to enhance accuracy through clinical and biochemical data integration, but its adoption relies on addressing usability, explainability, and seamless workflow integration without disrupting care. Objective: Evaluate RAPIDx AI's integration into clinical workflows, address usability barriers, and optimise its adoption in emergencies. Methods: The PROLIFERATE_AI framework was implemented across 12 EDs (July 2022-January 2024) with 39 participants: 15 experts co-designed a survey via Expert Knowledge Elicitation (EKE), applied to 24 ED clinicians to assess RAPIDx AI usability and adoption. Bayesian inference, using priors, estimated comprehension, emotional engagement, usage, and preference, while Monte Carlo simulations quantified uncertainty and variability, generating posterior means and 95% bootstrapped confidence intervals. Qualitative thematic analysis identified barriers and optimisation needs, with data triangulated through the PROLIFERATE_AI scoring system to rate RAPIDx AI's performance by user roles and demographics. Results: Registrars exhibited the highest comprehension (median: 0.466, 95 % CI: 0.41-0.51) and preference (median: 0.458, 95 % CI: 0.41-0.48), while residents/interns scored the lowest in comprehension (median: 0.198, 95 % CI: 0.17-0.26) and emotional engagement (median: 0.112, 95 % CI: 0.09-0.14). Registered nurses showed strong emotional engagement (median: 0.379, 95 % CI: 0.35-0.45). Novice users faced usability and workflow integration barriers, while experienced clinicians suggested automation and streamlined workflows. RAPIDx AI scored "Good Impact," excelling with trained users but requiring targeted refinements for novices. Conclusion: RAPIDx AI enhances diagnostic accuracy and efficiency for experienced users, but usability challenges for novices highlight the need for targeted training and interface refinements. The PROLIFERATE_AI framework offers a robust methodology for evaluating and scaling AI solutions, addressing the evolving needs of sociotechnical systems.
引用
收藏
页数:10
相关论文
共 48 条
[41]   Covid-19 triage in the emergency department 2.0: how analytics and AI transform a human-made algorithm for the prediction of clinical pathways [J].
Bartenschlager, Christina ;
Grieger, Milena ;
Erber, Johanna ;
Neidel, Tobias ;
Borgmann, Stefan ;
Vehreschild, Joerg J. ;
Steinbrecher, Markus ;
Rieg, Siegbert ;
Stecher, Melanie ;
Dhillon, Christine ;
Ruethrich, Maria ;
Jakob, Carolin E. M. ;
Hower, Martin ;
Heller, Axel ;
Vehreschild, Maria ;
Wyen, Christoph ;
Messmann, Helmut ;
Piepel, Christiane ;
Brunner, Jens ;
Hanses, Frank ;
Roemmele, Christoph ;
LEOSS Study Grp .
HEALTH CARE MANAGEMENT SCIENCE, 2023, 26 (03) :412-429
[42]   Demand analysis of transitional care for patients undergoing minimally invasive cardiac interventions with AI-driven solutions: a mixed-methods approach [J].
Liu, Yuwen ;
Li, Sijia ;
Yu, Jie ;
Cao, Jingjing ;
Ma, Qiao ;
Li, Min ;
Zheng, Yanqin ;
You, Yali ;
Lv, Wanqing ;
Li, Qiutong ;
Zhang, Chen ;
Piao, Meihua .
BMC NURSING, 2025, 24 (01)
[43]   Covid-19 triage in the emergency department 2.0: how analytics and AI transform a human-made algorithm for the prediction of clinical pathways [J].
Christina C. Bartenschlager ;
Milena Grieger ;
Johanna Erber ;
Tobias Neidel ;
Stefan Borgmann ;
Jörg J. Vehreschild ;
Markus Steinbrecher ;
Siegbert Rieg ;
Melanie Stecher ;
Christine Dhillon ;
Maria M. Ruethrich ;
Carolin E. M. Jakob ;
Martin Hower ;
Axel R. Heller ;
Maria Vehreschild ;
Christoph Wyen ;
Helmut Messmann ;
Christiane Piepel ;
Jens O. Brunner ;
Frank Hanses ;
Christoph Römmele .
Health Care Management Science, 2023, 26 :412-429
[44]   Evaluating How Explainable AI Is Perceived in the Medical Domain: A Human-Centered Quantitative Study of XAI in Chest X-Ray Diagnostics [J].
Karagoz, Gizem ;
van Kollenburg, Geert ;
Ozcelebi, Tanir ;
Meratnia, Nirvana .
TRUSTWORTHY ARTIFICIAL INTELLIGENCE FOR HEALTHCARE, TAI4H 2024, 2024, 14812 :92-108
[45]   AI-Generated Content-as-a-Service in IoMT-Based Smart Homes: Personalizing Patient Care With Human Digital Twins [J].
Akram, Junaid ;
Aamir, Misha ;
Raut, Roshani ;
Anaissi, Ali ;
Jhaveri, Rutvij H. ;
Akram, Awais .
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2025, 71 (01) :1352-1362
[46]   AI-Enabled Advanced Development for Assessing Low Circulating Blood Volume for Emergency Medical Care: Comparison of Compensatory Reserve Machine-Learning Algorithms [J].
Convertino, Victor A. ;
Techentin, Robert W. ;
Poole, Ruth J. ;
Dacy, Ashley C. ;
Carlson, Ashli N. ;
Cardin, Sylvain ;
Haider, Clifton R. ;
Holmes, David R., III ;
Wiggins, Chad C. ;
Joyner, Michael J. ;
Curry, Timothy B. ;
Inan, Omer T. .
SENSORS, 2022, 22 (07)
[47]   AI vs. Human-Authored Headlines: Evaluating the Effectiveness, Trust, and Linguistic Features of ChatGPT-Generated Clickbait and Informative Headlines in Digital News [J].
Gherhes, Vasile ;
Farcasiu, Marcela Alina ;
Cernicova-Buca, Mariana ;
Coman, Claudiu .
INFORMATION, 2025, 16 (02)
[48]   Evaluating AI-Generated informed consent documents in oral surgery: A comparative study of ChatGPT-4, Bard gemini advanced, and human-written consents [J].
Vaira, Luigi Angelo ;
Lechien, Jerome R. ;
Maniaci, Antonino ;
Tanda, Giuseppe ;
Abbate, Vincenzo ;
Allevi, Fabiana ;
Arena, Antonio ;
Beltramini, Giada Anna ;
Bergonzani, Michela ;
Bolzoni, Alessandro Remigio ;
Crimi, Salvatore ;
Frosolini, Andrea ;
Gabriele, Guido ;
Maglitto, Fabio ;
Mayo-Yanez, Miguel ;
Orru, Ludovica ;
Petrocelli, Marzia ;
Pucci, Resi ;
Saibene, Alberto Maria ;
Troise, Stefania ;
Tel, Alessandro ;
Vellone, Valentino ;
Chiesa-Estomba, Carlos Miguel ;
Boscolo-Rizzo, Paolo ;
Salzano, Giovanni ;
De Riu, Giacomo .
JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY, 2025, 53 (01) :18-23