Adaptive CT XIGA Using LR B-Splines for Efficient Fracture Modeling

被引:0
作者
Gao, Fei [1 ,2 ]
Ge, Cancan [1 ,2 ]
Tang, Zhuochao [1 ,2 ]
Gu, Jiming [1 ,2 ]
Meng, Rui [3 ]
机构
[1] Anhui Univ Technol, Sch Management Sci & Engn, Maanshan 243032, Peoples R China
[2] Anhui Univ Technol, Key Lab Multidisciplinary Management & Control Com, Maanshan 243032, Peoples R China
[3] Anhui Univ Technol, AHUT Engn Res Inst, Maanshan 243032, Peoples R China
基金
中国国家自然科学基金;
关键词
adaptivity; XIGA; LR B-splines; fracture; crack propagation; EXTENDED ISOGEOMETRIC ANALYSIS; EXTRACTION BASED XIGA; FINITE-ELEMENTS; CRACK-GROWTH; VIBRATION; PHT;
D O I
10.3390/ma18050920
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents a novel adaptive crack-tip extended isogeometric analysis (adaptive CT XIGA) framework based on locally refined B-splines (LR B-splines) for efficient and accurate fracture modeling in two-dimensional solids. The XIGA method facilitates crack modeling without requiring the specific locations of crack faces and enables crack propagation simulation without remeshing by employing localized enrichment functions. LR B-splines, as an advanced extension of B-splines and NURBS, offer high-order continuity, precise geometric representation, and local refinement capabilities, thereby enhancing computational accuracy and efficiency. Various local mesh refinement strategies, designed based on crack and crack-tip locations, are investigated. Among these strategies, the crack-tip topological refinement strategy is adopted for local refinement in the adaptive CT XIGA framework. Stress intensity factors (SIFs) are evaluated using the contour interaction integral technique, while the maximum circumferential stress criterion is adopted to predict the crack growth direction. Numerical examples demonstrate the accuracy, efficiency, and robustness of adaptive CT XIGA. The results confirm that the proposed framework achieves superior error convergence rates and significantly reduces computational costs compared to a-posteriori-error-based adaptive XIGA methods, particularly in crack propagation simulations. These advantages establish adaptive CT XIGA as a powerful and efficient tool for addressing complex fracture problems in solid mechanics.
引用
收藏
页数:26
相关论文
共 59 条
  • [1] Crouch S.L., Starfield A.M., Boundary Element Methods in Solid Mechanics, (1983)
  • [2] Liu Y.J., Li Y.X., Xie W., Modeling of multiple crack propagation in 2-D elastic solids by the fast multipole boundary element method, Eng. Fract. Mech, 172, pp. 1-16, (2017)
  • [3] Belytschko T., Lu Y.Y., Gu L., Tabbara M., Element-free Galerkin methods for static and dynamic fracture, Int. J. Solids Struct, 32, pp. 2547-2570, (1995)
  • [4] Li D.M., Liu J.H., Nie F.H., Featherston C.A., Wu Z., On tracking arbitrary crack path with complex variable meshless methods, Comput. Methods Appl. Mech. Eng, 399, (2022)
  • [5] Bourdin B., Francfort G.A., Marigo J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, pp. 797-826, (2000)
  • [6] Loehnert S., Kruger C., Klempt V., Munk L., An enriched phase-field method for the efficient simulation of fracture processes, Comput. Mech, 71, pp. 1015-1039, (2023)
  • [7] Belytschko T., Black T., Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng, 45, pp. 601-620, (1999)
  • [8] Moes N., Dolbow J., Belytschko T., A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng, 46, pp. 131-150, (1999)
  • [9] Hughes T.J.R., Cottrell J.A., Bazilevs Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng, 194, pp. 4135-4195, (2005)
  • [10] Benson D.J., Bazilevs Y., Luycker E.D., Hsu M.C., Scott M., Hughes T.J.R., Belytschko T., A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM, Int. J. Numer. Methods Eng, 83, pp. 765-785, (2010)