Quantitative reducibility of Ck quasi-periodic cocycles

被引:1
作者
Cai, Ao [1 ]
Lv, Huihui [1 ]
Wang, Zhiguo [1 ]
机构
[1] Soochow Univ, Sch Math Sci, Suzhou, Jiangsu, Peoples R China
关键词
discrete; finitely differentiable; quantitative reducibility; cocycle; SHARP HOLDER CONTINUITY; SCHRODINGER-OPERATORS; BALLISTIC TRANSPORT; INTEGRATED DENSITY; QUANTUM DYNAMICS; ROTATION NUMBER; JACOBI MATRICES; SPECTRUM;
D O I
10.1017/etds.2024.88
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes an extreme C-k reducibility theorem of quasi-periodic SL( 2, I[8) cocycles in the local perturbative region, revealing both the essence of Eliasson [Floquet solutions for the 1-dimensional quasi-periodic Schr & ouml;dinger equation. Comm. Math. Phys. 146 (1992), 447-482], and Hou and You [Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190 (2012), 209-260] in respectively the non-resonant and resonant cases. By paralleling further the reducibility process with the almost reducibility, we are able to acquire the least initial regularity as well as the least loss of regularity for the whole Kolmogorov-Arnold-Moser (KAM) iterations. This, in return, makes various spectral applications of quasi-periodic Schr & ouml;dinger operators wide open.
引用
收藏
页码:1649 / 1672
页数:24
相关论文
共 50 条
[41]   NON-PERTURBATIVE POSITIVITY AND WEAK HOLDER CONTINUITY OF LYAPUNOV EXPONENT OF ANALYTIC QUASI-PERIODIC JACOBI COCYCLES DEFINED ON A HIGH DIMENSION TORUS [J].
Tao, Kai .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
[42]   Ballistic transport for Schrodinger operators with quasi-periodic potentials [J].
Karpeshina, Yulia ;
Parnovski, Leonid ;
Shterenberg, Roman .
JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (05)
[43]   ON QUANTUM STABILITY FOR SYSTEMS UNDER QUASI-PERIODIC PERTURBATIONS [J].
SEGUNDO, JAB ;
HEY, H ;
WRESZINSKI, WF .
JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (5-6) :1479-1493
[44]   Properties of a class of quasi-periodic Schrödinger operators [J].
Xu, Jiahao ;
Xia, Xu .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02)
[45]   Large coupling asymptotics for the entropy of quasi-periodic operators [J].
Ge, Lingrui ;
You, Jiangong .
SCIENCE CHINA-MATHEMATICS, 2020, 63 (09) :1745-1756
[46]   The KAM approach to the localization in "haarsch" quasi-periodic media [J].
Chulaevsky, Victor .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
[47]   Ballistic transport in one-dimensional quasi-periodic continuous Schrodinger equation [J].
Zhao, Zhiyan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (09) :4523-4566
[48]   ABSOLUTELY CONTINUOUS SPECTRUM FOR CMV MATRICES WITH SMALL QUASI-PERIODIC VERBLUNSKY COEFFICIENTS [J].
Li, Long ;
Damanik, David ;
Zhou, Qi .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (09) :6093-6125
[49]   QUASI-PERIODIC AND PERIODIC SOLUTIONS OF THE TODA LATTICE VIA THE HYPERELLIPTIC SIGMA FUNCTION [J].
Kodama, Yuji ;
Matsutani, Shigeki ;
Previato, Emma .
ANNALES DE L INSTITUT FOURIER, 2013, 63 (02) :655-688
[50]   BALLISTIC ELECTRON-TRANSPORT ON PERIODIC AND QUASI-PERIODIC TRIANGULAR LATTICES OF SCATTERERS [J].
TAKAHARA, J ;
KAKUTA, T ;
YAMASHIRO, T ;
TAKAGAKI, Y ;
SHIOKAWA, T ;
GAMO, K ;
NAMBA, S ;
TAKAOKA, S ;
MURASE, K .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1991, 30 (11B) :3250-3255