A Real-Time Semantic Map Production System for Indoor Robot Navigation

被引:1
作者
Alqobali, Raghad [1 ]
Alnasser, Reem [2 ]
Rashidi, Asrar [2 ]
Alshmrani, Maha [2 ]
Alhmiedat, Tareq [2 ,3 ]
机构
[1] Saudi Data & AI Author, Riyadh 12382, Saudi Arabia
[2] Univ Tabuk, Fac Comp & Informat Technol, Informat Technol Dept, Tabuk 71491, Saudi Arabia
[3] Univ Tabuk, Artificial Intelligence & Sensing Technol AIST Res, Tabuk 71491, Saudi Arabia
关键词
robot navigation; semantic maps; path planning; robot vision; ENVIRONMENT;
D O I
10.3390/s24206691
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Although grid maps help mobile robots navigate in indoor environments, some lack semantic information that would allow the robot to perform advanced autonomous tasks. In this paper, a semantic map production system is proposed to facilitate indoor mobile robot navigation tasks. The developed system is based on the employment of LiDAR technology and a vision-based system to obtain a semantic map with rich information, and it has been validated using the robot operating system (ROS) and you only look once (YOLO) v3 object detection model in simulation experiments conducted in indoor environments, adopting low-cost, -size, and -memory computers for increased accessibility. The obtained results are efficient in terms of object recognition accuracy, object localization error, and semantic map production precision, with an average map construction accuracy of 78.86%.
引用
收藏
页数:16
相关论文
共 31 条
  • [1] Alamri S., 2021, Int. J. Mech. Eng. Robot. Res, V10, P668, DOI [10.18178/ijmerr.10.12.668-675, DOI 10.18178/IJMERR.10.12.668-675]
  • [2] An Autonomous Maze-Solving Robotic System Based on an Enhanced Wall-Follower Approach
    Alamri, Shatha
    Alamri, Hadeel
    Alshehri, Wejdan
    Alshehri, Shuruq
    Alaklabi, Ahad
    Alhmiedat, Tareq
    [J]. MACHINES, 2023, 11 (02)
  • [3] A Semantic Classification Approach for Indoor Robot Navigation
    Alenzi, Ziyad
    Alenzi, Emad
    Alqasir, Mohammad
    Alruwaili, Majed
    Alhmiedat, Tareq
    Alia, Osama Moh'd
    [J]. ELECTRONICS, 2022, 11 (13)
  • [4] Fingerprint-Based Localization Approach for WSN Using Machine Learning Models
    Alhmiedat, Tareq
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [5] A SLAM-Based Localization and Navigation System for Social Robots: The Pepper Robot Case
    Alhmiedat, Tareq
    Marei, Ashraf M.
    Messoudi, Wassim
    Albelwi, Saleh
    Bushnag, Anas
    Bassfar, Zaid
    Alnajjar, Fady
    Elfaki, Abdelrahman Osman
    [J]. MACHINES, 2023, 11 (02)
  • [6] Deep Learning-Based Vision Systems for Robot Semantic Navigation: An Experimental Study
    Alotaibi, Albandari
    Alatawi, Hanan
    Binnouh, Aseel
    Duwayriat, Lamaa
    Alhmiedat, Tareq
    Alia, Osama Moh'd
    [J]. TECHNOLOGIES, 2024, 12 (09)
  • [7] A Survey on Robot Semantic Navigation Systems for Indoor Environments
    Alqobali, Raghad
    Alshmrani, Maha
    Alnasser, Reem
    Rashidi, Asrar
    Alhmiedat, Tareq
    Alia, Osama Moh'd
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [8] People Detection and Tracking Using LIDAR Sensors
    Alvarez-Aparicio, Claudia
    Manuel Guerrero-Higueras, Angel
    Javier Rodriguez-Lera, Francisco
    Gines Clavero, Jonatan
    Martin Rico, Francisco
    Matellan, Vicente
    [J]. ROBOTICS, 2019, 8 (03)
  • [9] Barfield Woodrow, 2018, Paladyn, J Behavioral Robotics, V9, P193, DOI DOI 10.1515/PJBR-2018-0018
  • [10] A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets
    Bayoudh, Khaled
    Knani, Raja
    Hamdaoui, Faycal
    Mtibaa, Abdellatif
    [J]. VISUAL COMPUTER, 2022, 38 (08) : 2939 - 2970