RGBD GS-ICP SLAM

被引:4
作者
Ha, Seongbo [1 ]
Yeon, Jiung [1 ]
Yu, Hyeonwoo [1 ]
机构
[1] Sungkyunkwan Univ, Suwon, South Korea
来源
COMPUTER VISION - ECCV 2024, PT XXXVI | 2025年 / 15094卷
基金
新加坡国家研究基金会;
关键词
Coordinate-based 3D Representation; G-ICP; SLAM; ROBUST; REGISTRATION; VERSATILE; ODOMETRY; ACCURATE;
D O I
10.1007/978-3-031-72764-1_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Simultaneous Localization and Mapping (SLAM) with dense representation plays a key role in robotics, Virtual Reality (VR), and Augmented Reality (AR) applications. Recent advancements in dense representation SLAM have highlighted the potential of leveraging neural scene representation and 3D Gaussian representation for high-fidelity spatial representation. In this paper, we propose a novel dense representation SLAM approach with a fusion of Generalized Iterative Closest Point (G-ICP) and 3D Gaussian Splatting (3DGS). In contrast to existing methods, we utilize a single Gaussian map for both tracking and mapping, resulting in mutual benefits. Through the exchange of covariances between tracking and mapping processes with scale alignment techniques, we minimize redundant computations and achieve an efficient system. Additionally, we enhance tracking accuracy and mapping quality through our keyframe selection methods. Experimental results demonstrate the effectiveness of our approach, showing incredibly fast speeds up to 107 FPS (for the entire system) and superior quality of the reconstructed map. The code is available at: https://github.com/Lab-of-AI-and-Robotics/GS-ICP-SLAM Videois:https://youtu.be/ebHhuMMxE.
引用
收藏
页码:180 / 197
页数:18
相关论文
共 47 条
[11]   A Tutorial on Graph-Based SLAM [J].
Grisetti, Giorgio ;
Kuemmerle, Rainer ;
Stachniss, Cyrill ;
Burgard, Wolfram .
IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2010, 2 (04) :31-43
[12]  
Huang HJ, 2024, Arxiv, DOI [arXiv:2311.16728, DOI 10.48550/ARXIV.2311.16728]
[13]   ESLAM: Efficient Dense SLAM System Based on Hybrid Representation of Signed Distance Fields [J].
Johari, Mohammad Mahdi ;
Carta, Camilla ;
Fleuret, Francois .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :17408-17419
[14]  
Keetha N, 2024, Arxiv, DOI arXiv:2312.02126
[15]   3D Gaussian Splatting for Real-Time Radiance Field Rendering [J].
Kerbl, Bernhard ;
Kopanas, Georgios ;
Leimkuehler, Thomas ;
Drettakis, George .
ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (04)
[16]  
Kerl C, 2013, IEEE INT C INT ROBOT, P2100, DOI 10.1109/IROS.2013.6696650
[17]   Voxelized GICP for Fast and Accurate 3D Point Cloud Registration [J].
Koide, Kenji ;
Yokozuka, Masashi ;
Oishi, Shuji ;
Banno, Atsuhiko .
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, :11054-11059
[18]   vMAP: Vectorised Object Mapping for Neural Field SLAM [J].
Kong, Xin ;
Liu, Shikun ;
Taher, Marwan ;
Davison, Andrew J. .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, :952-961
[19]  
Lin JR, 2020, IEEE INT CONF ROBOT, P3126, DOI 10.1109/ICRA40945.2020.9197440
[20]  
Low Kok-Lim., 2004, LINEAR LEAST SQUARES, P4