RGBD GS-ICP SLAM

被引:4
作者
Ha, Seongbo [1 ]
Yeon, Jiung [1 ]
Yu, Hyeonwoo [1 ]
机构
[1] Sungkyunkwan Univ, Suwon, South Korea
来源
COMPUTER VISION - ECCV 2024, PT XXXVI | 2025年 / 15094卷
基金
新加坡国家研究基金会;
关键词
Coordinate-based 3D Representation; G-ICP; SLAM; ROBUST; REGISTRATION; VERSATILE; ODOMETRY; ACCURATE;
D O I
10.1007/978-3-031-72764-1_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Simultaneous Localization and Mapping (SLAM) with dense representation plays a key role in robotics, Virtual Reality (VR), and Augmented Reality (AR) applications. Recent advancements in dense representation SLAM have highlighted the potential of leveraging neural scene representation and 3D Gaussian representation for high-fidelity spatial representation. In this paper, we propose a novel dense representation SLAM approach with a fusion of Generalized Iterative Closest Point (G-ICP) and 3D Gaussian Splatting (3DGS). In contrast to existing methods, we utilize a single Gaussian map for both tracking and mapping, resulting in mutual benefits. Through the exchange of covariances between tracking and mapping processes with scale alignment techniques, we minimize redundant computations and achieve an efficient system. Additionally, we enhance tracking accuracy and mapping quality through our keyframe selection methods. Experimental results demonstrate the effectiveness of our approach, showing incredibly fast speeds up to 107 FPS (for the entire system) and superior quality of the reconstructed map. The code is available at: https://github.com/Lab-of-AI-and-Robotics/GS-ICP-SLAM Videois:https://youtu.be/ebHhuMMxE.
引用
收藏
页码:180 / 197
页数:18
相关论文
共 47 条
[1]   A METHOD FOR REGISTRATION OF 3-D SHAPES [J].
BESL, PJ ;
MCKAY, ND .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (02) :239-256
[2]   The normal distributions transform: A new approach to laser scan matching [J].
Biber, P .
IROS 2003: PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2003, :2743-2748
[3]  
Bylow E., 2013, PROC INT C ROBOT SCI, V2, P2
[4]   ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM [J].
Campos, Carlos ;
Elvira, Richard ;
Gomez Rodriguez, Juan J. ;
Montiel, Jose M. M. ;
Tardos, Juan D. .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (06) :1874-1890
[5]  
Canelhas DR, 2013, IEEE INT C INT ROBOT, P3671, DOI 10.1109/IROS.2013.6696880
[6]  
Ceriani S, 2015, IEEE INT C INT ROBOT, P750, DOI 10.1109/IROS.2015.7353456
[7]  
Chetverikov D, 2002, INT C PATT RECOG, P545, DOI 10.1109/ICPR.2002.1047997
[8]   Orbeez-SLAM: A Real-time Monocular Visual SLAM with ORB Features and NeRF-realized Mapping [J].
Chung, Chi-Ming ;
Tseng, Yang-Che ;
Hsu, Ya-Ching ;
Shi, Xiang-Qian ;
Hua, Yun-Hung ;
Yeh, Jia-Fong ;
Chen, Wen-Chin ;
Chen, Yi-Ting ;
Hsu, Winston H. .
2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, :9400-9406
[9]   DeepFactors: Real-Time Probabilistic Dense Monocular SLAM [J].
Czarnowski, Jan ;
Laidlow, Tristan ;
Clark, Ronald ;
Davison, Andrew J. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) :721-728
[10]   BundleFusion: Real-Time Globally Consistent 3D Reconstruction Using On-the-Fly Surface Reintegration [J].
Dai, Angela ;
Niessner, Matthias ;
Zollhofer, Michael ;
Izadi, Shahram ;
Theobalt, Christian .
ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (03)