Integrability and Darboux Transformation of a Four-component Volterra Lattice Equation

被引:0
|
作者
Sun, Hong-Qian [1 ]
Zhao, Hai-Qiong [2 ]
Zhu, Zuo-Nong [3 ,4 ]
机构
[1] Zhejiang Univ Technol, Sch Math Sci, Hangzhou 310023, Peoples R China
[2] Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[4] Fuyao Univ Sci & Technol, Fuzhou 350300, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
MAGNETIC-PROPERTIES;
D O I
10.7566/JPSJ.93.104001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A four-component Volterra (fc-Volterra) lattice hierarchy is proposed from a 4 x 4 matrix spectral problem. Through the continuous limit, the first member of the fc-Volterra lattice hierarchy yields the generalized coupled KdV equation, which has important physical applications. We construct the Darboux transformation (DT) and exact solutions for the fcperiodic interaction solution, and rational-exponential interaction solution. Furthermore, we present the continuous limit for the linear spectral problem and soliton solutions of the fc-Volterra lattice equation, considering spatial step tends to zero.
引用
收藏
页数:14
相关论文
共 50 条