Revealing ionically isolated Li loss in practical rechargeable Li metal pouch cells

被引:3
作者
Duan, Xiangrui [1 ]
Li, Yuanjian [1 ]
Huang, Kai [2 ]
Tu, Shuibin [1 ]
Li, Guocheng [1 ]
Wang, Wenyu [1 ]
Luo, Hongyu [1 ]
Chen, Zihe [1 ]
Li, Chunhao [1 ]
Cheng, Kai [1 ]
Wang, Xin-Xin [3 ]
Wang, Li [4 ]
Sun, Yongming [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mold Technol, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Aerosp Engn, Dept Mech, State Key Lab Mat Proc & Die & Mold Technol, Wuhan 430074, Peoples R China
[4] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
关键词
Dead Li; Ionically isolated Li; Electrolyte infilling ratio; Li metal batteries; Lean electrolyte conditions; LITHIUM; ANODE;
D O I
10.1016/j.scib.2025.01.030
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The degradation of rechargeable lithium (Li) metal batteries is primarily attributed to active Li loss, encompassing isolated Li, also known as "dead Li", and solid electrolyte interphase (SEI-Li). Comprehending the formation of dead Li is pivotal for devising strategies to mitigate Li loss. Herein, we reveal the existence of an alternative form of dead Li, termed ionically isolated Li (I-iLi), which diverges from the traditionally recognized electronically isolated Li (E-iLi). This phenomenon is elucidated through a quantitative analysis of electrolyte-dependent capacity recovery at a specific state of health (SOH) in high-energy pouch cells, which originates from disconnections within the Li-ion percolation network induced by electrolyte de-wetting. Furthermore, we propose the electrolyte infilling ratio (EFR), contingent upon the porosity of Li deposits and electrolyte retention, as a criterion to evaluate electrode wettability. To uphold a high EFR environment, we introduce stress modulation to compact the anode structure and mitigate electrolyte degradation, significantly reducing the I-iLi content from 21% at 0.1 MPa to 1% at 1 MPa. Harnessing these insights, a prototype anode-free LiNi0.95Mn0.03Co0.02O2||Cu pouch cell (1.4 Ah) achieves an extraordinary cell-level energy density of 551 Wh kg 1and maintains 70% capacity after 100 cycles at 0.2 C. (c) 2025 Science China Press. Published by Elsevier B.V. and Science China Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:914 / 922
页数:9
相关论文
共 42 条
[1]   Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries [J].
Chen, Shuru ;
Niu, Chaojiang ;
Lee, Hongkyung ;
Li, Qiuyan ;
Yu, Lu ;
Xu, Wu ;
Zhang, Ji-Guang ;
Dufek, Eric J. ;
Whittingham, M. Stanley ;
Meng, Shirley ;
Xiao, Jie ;
Liu, Jun .
JOULE, 2019, 3 (04) :1094-1105
[2]   Phase Transfer-Mediated Degradation of Ether-Based Localized High-Concentration Electrolytes in Alkali Metal Batteries [J].
Chen, Xiaojuan ;
Qin, Lei ;
Sun, Jiaonan ;
Zhang, Songwei ;
Xiao, Dan ;
Wu, Yiying .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (33)
[3]   Revealing the Intrinsic Uneven Electrochemical Reactions of Li Metal Anode in Ah-Level Laminated Pouch Cells [J].
Duan, Xiangrui ;
Wang, Lingyue ;
Li, Guocheng ;
Liu, Xueting ;
Wan, Mintao ;
Du, Junmou ;
Zhan, Renming ;
Wang, Wenyu ;
Li, Yuanjian ;
Tu, Shuibin ;
Shen, Yue ;
Seh, Zhi Wei ;
Wang, Li ;
Sun, Yongming .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (06)
[4]   Cycling Performance of NMC811 Anode-Free Pouch Cells with 65 Different Electrolyte Formulations [J].
Eldesoky, A. ;
Louli, A. J. ;
Benson, A. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (12)
[5]   Pressure-tailored lithium deposition and dissolution in lithium metal batteries [J].
Fang, Chengcheng ;
Lu, Bingyu ;
Pawar, Gorakh ;
Zhang, Minghao ;
Cheng, Diyi ;
Chen, Shuru ;
Ceja, Miguel ;
Doux, Jean-Marie ;
Musrock, Henry ;
Cai, Mei ;
Liaw, Boryann ;
Meng, Ying Shirley .
NATURE ENERGY, 2021, 6 (10) :987-994
[6]   Quantifying inactive lithium in lithium metal batteries [J].
Fang, Chengcheng ;
Li, Jinxing ;
Zhang, Minghao ;
Zhang, Yihui ;
Yang, Fan ;
Lee, Jungwoo Z. ;
Lee, Min-Han ;
Alvarado, Judith ;
Schroeder, Marshall A. ;
Yang, Yangyuchen ;
Lu, Bingyu ;
Williams, Nicholas ;
Ceja, Miguel ;
Yang, Li ;
Cai, Mei ;
Gu, Jing ;
Xu, Kang ;
Wang, Xuefeng ;
Meng, Ying Shirley .
NATURE, 2019, 572 (7770) :511-+
[7]   Triple-function eutectic solvent additive for high performance lithium metal batteries [J].
Fang, Wenqiang ;
Wen, Zuxin ;
Wang, Fenglin ;
Chen, Long ;
Zhang, Ying ;
Zhang, Ning ;
Liu, Xiaohe ;
Chen, Gen .
SCIENCE BULLETIN, 2024, 69 (11) :1686-1696
[8]   Constructing LiF/Li2CO3-rich heterostructured electrode electrolyte interphases by electrolyte additive for 4.5 V well-cycled lithium metal batteries [J].
Hu, Xinhong ;
Li, Yong ;
Liu, Jiandong ;
Wang, Zhongsheng ;
Bai, Ying ;
Ma, Jianmin .
SCIENCE BULLETIN, 2023, 68 (12) :1295-1305
[9]   A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries [J].
Jin, Chengbin ;
Huang, Yiyu ;
Li, Lanhang ;
Wei, Guoying ;
Li, Hongyan ;
Shang, Qiyao ;
Ju, Zhijin ;
Lu, Gongxun ;
Zheng, Jiale ;
Sheng, Ouwei ;
Tao, Xinyong .
NATURE COMMUNICATIONS, 2023, 14 (01)
[10]   Rejuvenating dead lithium supply in lithium metal anodes by iodine redox [J].
Jin, Chengbin ;
Liu, Tiefeng ;
Sheng, Ouwei ;
Li, Matthew ;
Liu, Tongchao ;
Yuan, Yifei ;
Nai, Jianwei ;
Ju, Zhijin ;
Zhang, Wenkui ;
Liu, Yujing ;
Wang, Yao ;
Lin, Zhan ;
Lu, Jun ;
Tao, Xinyong .
NATURE ENERGY, 2021, 6 (04) :378-387