Many-body density of states of bosonic and fermionic gases: a combinatorial approach

被引:0
作者
Echter, Carolyn [1 ]
Maier, Georg [1 ]
Urbina, Juan-Diego [1 ]
Lewenkopf, Caio [2 ]
Richter, Klaus [1 ]
机构
[1] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
[2] Univ Fed Fluminense, Inst Fis, BR-24210346 Niteroi, RJ, Brazil
关键词
bethe approximation; density of states; non-interacting many-body systems; combinatorics; QUANTUM; THERMALIZATION;
D O I
10.1088/1751-8121/adae68
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a combinatorial approach to obtain exact expressions for the many-body density of states of fermionic and bosonic gases with equally spaced single-particle spectra. We identify a mapping that reveals a remarkable property, namely, fermionic and bosonic gases have the same many-body density of states, up to a shift corresponding to ground state energy. Additionally, we show that there is a regime, comprising the validity range of the Bethe approximation, where the many-body density of states becomes independent of the number of particles.
引用
收藏
页数:16
相关论文
共 37 条
[1]  
Agarwala B K., 1951, Math. Proc. Cambridge Phil. Soc, V47, P207
[2]  
Agnarsson G., 2002, Congressus Numerantium, ppp 49
[3]  
Alhassid Y., 2021, Nuclear Level Densities: From Empirical Models to Microscopic Methods (Compound-Nuclear Reactions), ppp 97
[4]   STATISTICAL MECHANICS AND THE PARTITIONS OF NUMBERS [J].
AULUCK, FC ;
KOTHARI, DS .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1946, 42 (03) :272-277
[5]   An attempt to calculate the number of energy levels of a heavy nucleus [J].
Bethe, HA .
PHYSICAL REVIEW, 1936, 50 (04) :332-341
[6]   THEORY OF NUCLEAR LEVEL DENSITY [J].
BLOCH, C .
PHYSICAL REVIEW, 1954, 93 (05) :1094-1106
[7]  
Bohr A. N., 1998, Nuclear Structure
[8]   Level density of a bose gas and extreme value statistics [J].
Comtet, A. ;
Leboeuf, P. ;
Majumdar, Satya N. .
PHYSICAL REVIEW LETTERS, 2007, 98 (07)
[9]  
Comtet L., 1974, Advanced Combinatorics: The Art of Finite and Infinite Expansions
[10]   QUANTUM STATISTICAL-MECHANICS IN A CLOSED SYSTEM [J].
DEUTSCH, JM .
PHYSICAL REVIEW A, 1991, 43 (04) :2046-2049