3D-VoCC: 3D vortex correlation clustering on spatial data based on masked hough transform

被引:0
作者
de Sousa, Nelson Tavares [1 ]
Woelker, Yannick [1 ,2 ]
Renz, Matthias [1 ]
Biastoch, Arne [2 ]
机构
[1] Univ Kiel, Dept Comp Sci, Christian Albrechts Pl 4, D-24118 Kiel, Schleswig Holst, Germany
[2] GEOMAR Helmholtz Ctr Ocean Res, Wischhofstr 1-3, D-24148 Kiel, Schleswig Holst, Germany
关键词
Spatio-temporal data; Cluster detection; Correlation clustering; Hough transform; Spatial object databases; Marine data science; EDDY; CIRCULATION;
D O I
10.1007/s10707-025-00540-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The discovery of patterns in spatial and spatio-temporal data is crucial across scientific disciplines studying natural phenomena to enhance our understanding of the real world. These phenomena display complex patterns, necessitating novel specialized pattern mining techniques. In this paper, we introduce Vortex Correlation Clustering which aims to identify a subgroup of such complex pattern, namely correlated groups of objects oriented along a vortex. This can be achieved by adapting the Circle Hough Transform, already known from image analysis. The presented adaptations not only allow to cluster objects depending on their relative location next to each other, but also allows to take the orientation of individual objects into consideration. A multi-step approach allows to analyze and aggregate cluster candidates, allowing a certain deviation from the reference shape in the final clusters. Further adaptations allow to analyze clusters along a third dimension, which allows to reflect the shape of real-world objects in a three dimensional space. We evaluate our approach upon a real world application, to cluster particle simulations composing such shapes. Our approach outperforms comparable methods for this application, both in terms of effectiveness and efficiency. Additionally, we discuss how the adaptation enables further analysis capabilities. For instance, in the presented use case, the introduced approach allows to additionally analyze clusters throughout the depth of the water. So far, this is not feasible with existing approaches.
引用
收藏
页码:603 / 634
页数:32
相关论文
共 39 条
[1]  
Achtert E., 2008, STAT ANAL DATA MIN, V1, P111, DOI DOI 10.1002/SAM.10012
[2]  
Ankerst M., 1999, SIGMOD Record, V28, P49, DOI 10.1145/304181.304187
[3]   Size invariant circle detection [J].
Atherton, TJ ;
Kerbyson, DJ .
IMAGE AND VISION COMPUTING, 1999, 17 (11) :795-803
[4]   On the role of the Agulhas system in ocean circulation and climate [J].
Beal, Lisa M. ;
De Ruijter, Wilhelmus P. M. ;
Biastoch, Arne ;
Zahn, Rainer .
NATURE, 2011, 472 (7344) :429-436
[5]   Regional imprints of changes in the Atlantic Meridional Overturning Circulation in the eddy-rich ocean model VIKING20X [J].
Biastoch, Arne ;
Schwarzkopf, Franziska U. ;
Getzlaff, Klaus ;
Ruehs, Siren ;
Martin, Torge ;
Scheinert, Markus ;
Schulzki, Tobias ;
Handmann, Patricia ;
Hummels, Rebecca ;
Boening, Claus W. .
OCEAN SCIENCE, 2021, 17 (05) :1177-1211
[6]  
Bilo V, 2005, GEOMETRIC CLUSTERING, V3669, P460, DOI 10.10071156107142
[7]   ST-DBSCAN: An algorithm for clustering spatial-temp oral data [J].
Birant, Derya ;
Kut, Alp .
DATA & KNOWLEDGE ENGINEERING, 2007, 60 (01) :208-221
[8]   Lagrangian Views of the Pathways of the Atlantic Meridional Overturning Circulation [J].
Bower, A. ;
Lozier, S. ;
Biastoch, A. ;
Drouin, K. ;
Foukal, N. ;
Furey, H. ;
Lankhorst, M. ;
Ruhs, S. ;
Zou, S. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2019, 124 (08) :5313-5335
[9]   Global observations of nonlinear mesoscale eddies [J].
Chelton, Dudley B. ;
Schlax, Michael G. ;
Samelson, Roger M. .
PROGRESS IN OCEANOGRAPHY, 2011, 91 (02) :167-216
[10]   VoCC: Vortex Correlation Clustering Based on Masked Hough Transformation in Spatial Databases [J].
de Sousa, Nelson Tavares ;
Woelker, Yannick ;
Renz, Matthias ;
Biastoch, Arne .
PROCEEDINGS OF 2023 18TH INTERNATIONAL SYMPOSIUM ON SPATIAL AND TEMPORAL DATA, SSTD 2023, 2023, :51-60