Density Functions of Periodic Sequences

被引:6
作者
Anosova, Olga [1 ]
Kurlin, Vitaliy [1 ]
机构
[1] Univ Liverpool, Dept Comp Sci, Liverpool L69 3BX, Merseyside, England
来源
DISCRETE GEOMETRY AND MATHEMATICAL MORPHOLOGY, DGMM 2022 | 2022年 / 13493卷
基金
英国工程与自然科学研究理事会;
关键词
Periodic sequence; Isometry invariant; Density functions;
D O I
10.1007/978-3-031-19897-7_31
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper contributes to the emergent area of Periodic Geometry, which studies continuous spaces of solid crystalline materials (crystals) by new methods of metric geometry. Since crystal structures are determined in a rigid form, their strongest practical equivalence is rigid motion or isometry preserving inter-point distances. The most fundamental model of any crystal is a periodic set of points at all atomic centers. The previous work introduced an infinite sequence of density functions that are continuous isometry invariants of periodic point sets. These density functions turned out to be highly non-trivial even in dimension 1 for periodic sequences of points in the line. This paper fully describes the density functions of any periodic sequence and their symmetry properties. The explicit description confirms coincidences of density functions that were previously computed via finite samples.
引用
收藏
页码:395 / 408
页数:14
相关论文
共 15 条
[1]  
Anosova O., 2021, arXiv
[2]  
Anosova O, 2024, Arxiv, DOI arXiv:2205.15298
[3]  
Bright M., 2021, arXiv
[4]  
Bright M, 2022, Arxiv, DOI arXiv:2109.10885
[5]  
Edelsbrunner H., 2021, SoCG, V189
[6]   THE USE OF HIGHER-ORDER INVARIANTS IN THE DETERMINATION OF GENERALIZED PATTERSON CYCLOTOMIC SETS [J].
GRUNBAUM, FA ;
MOORE, CC .
ACTA CRYSTALLOGRAPHICA SECTION A, 1995, 51 :310-323
[7]  
Kurlin V., 2022, ARXIV
[8]  
Kurlin V, 2022, PREPRINT, DOI DOI 10.48550/ARXIV.2201.10543
[9]  
Kurlin V, 2022, Arxiv, DOI arXiv:2205.04388
[10]   Voronoi-Based Similarity Distances between Arbitrary Crystal Lattices [J].
Mosca, Marco M. ;
Kurlin, Vitaliy .
CRYSTAL RESEARCH AND TECHNOLOGY, 2020, 55 (05)