Selective Carbon Dioxide Hydrogenation to Olefin-Rich Hydrocarbons by Cu/FeOx Nanoarchitectures Under Atmospheric Pressure

被引:0
作者
Qadir, Muhammad I. [1 ]
Zilkova, Nadezda [1 ]
Kvitek, Libor [2 ]
Vajda, Stefan [1 ]
机构
[1] J Heyrovsky Inst Phys Chem, Dept Nanocatalysis, Dolejskova 2155-3, Prague 8, Czech Republic
[2] Palacky Univ Olomouc, Fac Sci, Dept Phys Chem, 17 Listopadu 12, Olomouc 77146, Czech Republic
关键词
carbon dioxide hydrogenation; Cu/FeOx; olefins; nanocatalyst; FISCHER-TROPSCH SYNTHESIS; CO2; HYDROGENATION; CATALYTIC CONVERSION; NANOPARTICLES; DEACTIVATION; COBALT; NANOCATALYSTS; TEMPERATURE; MORPHOLOGY; CHEMISTRY;
D O I
10.3390/nano15050353
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The conversion of carbon dioxide into fuels and fine chemicals is a highly desirable route for mitigating flue gas emissions. However, achieving selectivity toward olefins remains challenging and typically requires high temperatures and pressures. Herein, we address this challenge using 12 nm copper nanoparticles supported on FeOx micro-rods, which promote the selective hydrogenation of CO2 to light olefins (C2-C4) under atmospheric pressure. This catalyst achieves up to 27% conversion and 52% selectivity toward C2-C4 olefins, along with the production of C2-C4 paraffins, C5+ hydrocarbons (with all C1+ products totalling to up to about 75%), and methane, while suppressing CO formation to just 1% at 340 degrees C. The enhanced performance of the Cu/FeOx pre-catalyst is attributed to the efficient in situ generation of iron carbides (Fe5C2) in the presence of copper nanoparticles, as confirmed by ex situ XRD analysis. Copper facilitates the reduction of FeOx to form Fe5C2, a crucial intermediate for shifting the reaction equilibrium toward higher hydrocarbons. The hydrogenation of CO2 to higher hydrocarbons proceeds through the reverse water-gas shift reaction coupled with Fischer-Tropsch synthesis.
引用
收藏
页数:11
相关论文
共 57 条
[1]   Engineering of Ruthenium-Iron Oxide Colloidal Heterostructures: Improved Yields in CO2 Hydrogenation to Hydrocarbons [J].
Aitbekova, Aisulu ;
Goodman, Emmett D. ;
Wu, Liheng ;
Boubnov, Alexey ;
Hoffman, Adam S. ;
Genc, Arda ;
Cheng, Huikai ;
Casalena, Lee ;
Bare, Simon R. ;
Cargnello, Matteo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (48) :17451-17457
[2]   Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction [J].
Al-Dossary, M. ;
Ismail, Adel A. ;
Fierro, J. L. G. ;
Bouzid, Houcine ;
Al-Sayari, S. A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 165 :651-660
[3]   Unexpectedly efficient CO2 hydrogenation to higher hydrocarbons over non-doped Fe2O3 [J].
Albrecht, Matthias ;
Rodemerck, Uwe ;
Schneider, Matthias ;
Broering, Martin ;
Baabe, Dirk ;
Kondratenko, Evgenii V. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 204 :119-126
[4]   The Effect of Copper Addition on the Activity and Stability of Iron-Based CO2 Hydrogenation Catalysts [J].
Bradley, Matthew J. ;
Ananth, Ramagopal ;
Willauer, Heather D. ;
Baldwin, Jeffrey W. ;
Hardy, Dennis R. ;
Williams, Frederick W. .
MOLECULES, 2017, 22 (09)
[5]   Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries [J].
Centi, Gabriele ;
Quadrelli, Elsje Alessandra ;
Perathoner, Siglinda .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1711-1731
[6]   Opportunities and prospects in the chemical recycling of carbon dioxide to fuels [J].
Centi, Gabriele ;
Perathoner, Siglinda .
CATALYSIS TODAY, 2009, 148 (3-4) :191-205
[7]   Sodium-Containing Spinel Zinc Ferrite as a Catalyst Precursor for the Selective Synthesis of Liquid Hydrocarbon Fuels [J].
Choi, Yo Han ;
Ra, Eun Cheol ;
Kim, Eun Hyup ;
Kim, Kwang Young ;
Jang, Youn Jeong ;
Kang, Kyeong-Nam ;
Choi, Sun Hee ;
Jang, Ji-Hyun ;
Lee, Jae Sung .
CHEMSUSCHEM, 2017, 10 (23) :4764-4770
[8]   Micro-mesoporous iron oxides with record efficiency for the decomposition of hydrogen peroxide: morphology driven catalysis for the degradation of organic contaminants [J].
Datta, K. J. ;
Gawande, M. B. ;
Datta, K. K. R. ;
Ranc, V. ;
Pechousek, J. ;
Krizek, M. ;
Tucek, J. ;
Kale, R. ;
Pospisil, P. ;
Varma, R. S. ;
Asefa, T. ;
Zoppellaro, G. ;
Zboril, R. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (02) :596-604
[9]   The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour [J].
de Smit, Emiel ;
Weckhuysen, Bert M. .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (12) :2758-2781
[10]   Advances in the Design of Heterogeneous Catalysts and Thermocatalytic Processes for CO2 Utilization [J].
De, Sudipta ;
Dokania, Abhay ;
Ramirez, Adrian ;
Gascon, Jorge .
ACS CATALYSIS, 2020, 10 (23) :14147-14185