Numerical Simulation of CO2 Dissolution and Mineralization Storage Considering CO2-Water-Rock Reaction in Aquifers

被引:0
|
作者
Zuo, Qingying [1 ,2 ]
Zhang, Yizhong [1 ,2 ]
Zhang, Maolin [1 ,2 ]
Ju, Bin [3 ]
Ning, Wenhui [1 ]
Deng, Xin [1 ]
Yang, Long [4 ]
Pang, Chaofeng [1 ,2 ]
机构
[1] Yangtze Univ, Petr Engn Sch, Wuhan 430100, Peoples R China
[2] Yangtze Univ, Cooperat Innovat Ctr Unconvent Oil & Gas, Wuhan 430100, Peoples R China
[3] Southwest Petr Univ, Fac Petr Engn, Chengdu 610500, Peoples R China
[4] Explorat & Dev Res Inst, Sinopec Zhongyuan Oilfield Branch, Puyang 457000, Peoples R China
来源
ACS OMEGA | 2024年 / 9卷 / 46期
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE; ORDOS BASIN; GEOLOGICAL STORAGE; IMPROVED MODEL; SEQUESTRATION; INJECTION; SOLUBILITY; PRESSURE; CHINA; BRINE;
D O I
10.1021/acsomega.4c05620
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CO2 storage technology is crucial in addressing climate change by controlling the greenhouse effect. This technology involves the injection of captured CO2 into deep saline aquifers, where it undergoes a series of reactions, such as structure binding, dissolution, and mineralization, enabling long-term storage. Typically, the CO2 is maintained in a supercritical state, enhancing its storage efficiency. However, the efficiency can be influenced by the CO2-water-rock reactions. Many minerals exist in rock, like calcite, dolomite, kaolinite, etc. This study introduces some chemical reactions that occur during the dissolution and mineralization of CO2. The relationship between solubility and pressure was obtained through solubility fitting. We obtained the initial parameters of the CO2-water-rock reaction experiment by fitting the data. These parameters can be applied to the mechanism model. This study employs the GEM module of CMG software, integrating physical parameters from the Ordos Basin's deep saline aquifers to develop a mechanism model. In this model, CO2 injection started from the first year and continued for 20 years. This study simulated a total of 80 years of CO2 storage. This study has elucidated how reservoir conditions and injection schemes affect the dissolution and mineralization of CO2. This study creatively combines practical experiments and numerical simulations and uses numerical simulations to compensate for the manpower and material resources consumed in actual experiments. The research results indicate that permeability should not be too high, and an increase in porosity is beneficial for storage. As the injection rate increases, the amount of CO2 storage increases. Top layer perforation yields lower efficiency compared to full, middle, or bottom layer perforation, with the latter providing the higher efficiency in CO2 dissolution and mineralization. Bottom perforation is the most favorable perforation position for CO2 storage.
引用
收藏
页码:45983 / 45995
页数:13
相关论文
共 50 条
  • [21] Numerical simulation study on CO2 storage in coalbed
    Qiao, Ling
    Deng, Cunbao
    Fan, Yongpeng
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2020, 42 (04) : 446 - 459
  • [22] Kinetic modelling of CO2-water-rock interactions
    Hellevang, Helge
    Pham, Van T. H.
    Aagaard, Per
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 15 : 3 - 15
  • [23] THE CO2 STORAGE EFFICIENCY OF AQUIFERS
    VANDERMEER, LGH
    ENERGY CONVERSION AND MANAGEMENT, 1995, 36 (6-9) : 513 - 518
  • [24] Horizontal Wells for Enhanced CO2 Storage in Saline Aquifers
    Firoozmand, Hasti
    Leonenko, Yuri
    ENERGY & FUELS, 2024, 38 (13) : 11875 - 11890
  • [25] CO2 storage capacity estimation by considering CO2 Dissolution: A case study in a depleted gas Reservoir, China
    He, Youwei
    Liu, Mengyun
    Tang, Yong
    Jia, Cunqi
    Wang, Yong
    Rui, Zhenhua
    JOURNAL OF HYDROLOGY, 2024, 630
  • [26] CO2 Geological Storage in Saline Aquifers: Parana Basin Caprock and Reservoir Chemical Reactivity
    de Lima, Viviane
    Einloft, Sandra
    Ketzer, Joao Marcelo
    Jullien, Michel
    Bildstein, Olivier
    Petronin, Jean-Claude
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 5377 - 5384
  • [27] Characterizing long-term CO2-water-rock reaction pathways to identify tracers of CO2 migration during geological storage in a low-salinity, siliciclastic reservoir system
    Horner, Kyle N.
    Schacht, Ulrike
    Haese, Ralf R.
    CHEMICAL GEOLOGY, 2015, 399 : 123 - 133
  • [28] CO2 geological storage in subsurface aquifers as a function of brine salinity: A field-scale numerical investigation
    Zhang, Haiyang
    Zhang, Yihuai
    Arif, Muhammad
    GEOENERGY SCIENCE AND ENGINEERING, 2025, 245
  • [29] Numerical Modeling of CO2 Mineralisation during Storage in Deep Saline Aquifers
    Ranganathan, Panneerselvam
    van Hemert, Patrick
    Rudolph, E. Susanne J.
    Zitha, Pacelli Z. J.
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 4538 - 4545
  • [30] FACTORS INFLUENCING THE SAFETY OF CO2 GEOLOGICAL STORAGE IN DEEP SALINE AQUIFERS
    Qiao, Xiaojuan
    Li, Guomin
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2014, 13 (12): : 2917 - 2928