Unlocking the potential of CIGS solar cells: harnessing CZTS as a second absorber layer for enhanced performance and sustainability

被引:4
作者
Charrada, Ghofrane [1 ]
Hajji, Moez [1 ]
Ajili, Mejda [1 ]
Garcia-Loureiro, Antonio [2 ]
Kamoun, Najoua Turki [1 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Dept Phys, LR99ES13 Lab Phys Matiere Condensee LPMC, Tunis 2092, Tunisia
[2] Univ Santiago de Compostela, Ctr Singular Invest Tecnoloxias Informac CITIUS, Santiago De Compostela, Spain
来源
JOURNAL OF OPTICS-INDIA | 2024年
关键词
Solar cell; Thin films; Double absorber layer; Operating temperatures; EFFICIENCY; ELECTRON; OPTIMIZATION; PARAMETERS;
D O I
10.1007/s12596-024-02417-5
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Copper Indium Gallium Selenide (CIGS) solar cells represent a highly promising technology for sustainable energy generation. Despite their potential, widespread adoption has been hindered by the inherent toxicity of their constituent materials and concerns about device stability. In this study, we introduce a novel approach to address the toxicity and stability issues and enhance the efficiency of CIGS solar cells. Specifically, we used CuO-SnO2: F as green buffer layer to replace CdS in our solar cell structure. After that, we employed a dual-absorber layer configuration using CIGS and Copper Zinc Tin Sulfide (CZTS). This strategy allowed us to reduce the thickness of the CIGS layer, thereby diminishing its associated toxicity, while maintaining or improving solar cell performance. Using the Silvaco TCAD simulation tool, we meticulously analyzed the impact of this configuration on solar cell efficiency and other critical parameters. Our results demonstrate a significant increase in efficiency from 15.6 to 18.3% by integrating CZTS as a secondary absorber layer. This study not only highlights the effectiveness of combining CIGS with CZTS but also sets a precedent for future optimization of high-efficiency, environmentally benign solar cells. This advancement contributes meaningfully to the progression of renewable energy technologies and supports the development of more sustainable energy solutions.
引用
收藏
页数:10
相关论文
共 57 条
[1]   A numerical simulation of high efficiency CdS/CdTe based solar cell using NiO HTL and ZnO TCO [J].
Ahmmed, Shamim ;
Aktar, Asma ;
Rahman, Md. Ferdous ;
Hossain, Jaker ;
Ismail, Abu Bakar Md. .
OPTIK, 2020, 223
[2]  
Al-Ezzi Athil S., 2022, Appl. Syst. Innov, V5, P4
[3]   Numerical simulation of a new heterostructure CIGS/GaSe solar cell system using SCAPS-1D software [J].
Al-Hattab, Mohamed ;
Moudou, L'houcine ;
Khenfouch, Mohammed ;
Bajjou, Omar ;
Chrafih, Younes ;
Rahmani, Khalid .
SOLAR ENERGY, 2021, 227 :13-22
[4]  
Azira Ahmadet T., 2023, Mater. Today: Proceedings, V55, P1406
[5]   Influence of back surface field layer on enhancing the efficiency of CIGS solar cell [J].
Barman, B. ;
Kalita, P. K. .
SOLAR ENERGY, 2021, 216 :329-337
[6]   Performance enhancement of CIGS thin-film solar cell [J].
Bouabdelli, Mohamed Wahid ;
Rogti, Fatiha ;
Maache, Mostefa ;
Rabehi, Abdelaziz .
OPTIK, 2020, 216
[7]   Band gap and thickness optimization for improvement of CIGS/CIGS tandem solar cells using Silvaco software [J].
Bouanani, B. ;
Joti, A. ;
Bouiadjra, F. S. Bachir ;
Kadid, A. .
OPTIK, 2020, 204
[8]   Numerical Investigation of Perovskite and u-CIGS Based Tandem Solar Cells Using Silvaco TCAD Simulation [J].
Boukortt, Nour El, I ;
Patane, Salvatore ;
AlAmri, Amal M. ;
AlAjmi, Danah ;
Bulayyan, Kawthar ;
AlMutairi, Nawar .
SILICON, 2023, 15 (01) :293-303
[9]   Improvement of ozone sensing parameters by CuO-SnO2: F mixed oxide sprayed thin films [J].
Charrada, Ghofrane ;
Ajili, Mejda ;
Jebbari, Neila ;
Bernardini, Sandrine ;
Aguir, Khalifa ;
Kamoun, Najoua Turki .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (17)
[10]   Investigation on thermal annealing effect on the physical properties of CuO-SnO2:F sprayed thin films for NO2 gas sensor and solar cell simulation [J].
Charrada, Ghofrane ;
Ajili, Mejda ;
Jebbari, Neila ;
Hajji, Moez ;
Bernardini, Sandrine ;
Aguir, Khalifa ;
Kamoun, Najoua Turki .
MATERIALS LETTERS, 2024, 367