A Tightly Coupled and Invariant Filter for Visual-Inertial-GNSS-Barometer Odometry

被引:1
作者
Zhang, Pengfei [1 ]
Jiang, Chen [1 ]
Qiu, Jiyuan [1 ]
机构
[1] Tsinghua Univ, Sch Aerosp Engn, Beijing 100084, Peoples R China
关键词
Global navigation satellite system; Barometers; Robot sensing systems; Kalman filters; Atmospheric modeling; Simultaneous localization and mapping; Odometry; Algebra; Measurement uncertainty; Mathematical models; Barometer; GNSS; invariant filter; positioning system; visual-inertial odometry; SLAM; ROBUST;
D O I
10.1109/LRA.2025.3548500
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
A positioning system that relies solely on observations based on a local frame, such as visual-inertial odometry (VIO), suffers from unobservable directions, leading to cumulative estimation errors over time. To address this issue, we propose a tightly-coupled Visual-Inertial-GNSS-Barometer odometry (GBVIO) based on an invariant filter. The integration of Global Navigation Satellite System (GNSS) and barometric data enables global convergence. Our system supports both tightly coupled updates (using pseudorange and Doppler shift measurements) and loosely coupled updates (using global position data). We prove that the invariant filter using barometric observations remains invariant under stochastic unobservable transformations, thus exhibiting improved consistency. Validation through computer-based Monte Carlo simulations and real-world dataset experiments demonstrates the superiority of GBVIO over standalone VIO. All source code and datasets are publicly available.
引用
收藏
页码:3964 / 3971
页数:8
相关论文
共 29 条
[1]  
[Anonymous], 2005, P 18 INT TECH M SAT
[2]  
[Anonymous], 2001, Estimation With Applications to Tracking and Navigation, P1, DOI [10.1002/0471221279.ch1, DOI 10.1002/0471221279.CH1]
[3]   The Invariant Extended Kalman Filter as a Stable Observer [J].
Barrau, Axel ;
Bonnabel, Silvere .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (04) :1797-1812
[4]   Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age [J].
Cadena, Cesar ;
Carlone, Luca ;
Carrillo, Henry ;
Latif, Yasir ;
Scaramuzza, Davide ;
Neira, Jose ;
Reid, Ian ;
Leonard, John J. .
IEEE TRANSACTIONS ON ROBOTICS, 2016, 32 (06) :1309-1332
[5]   GVINS: Tightly Coupled GNSS-Visual-Inertial Fusion for Smooth and Consistent State Estimation [J].
Cao, Shaozu ;
Lu, Xiuyuan ;
Shen, Shaojie .
IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (04) :2004-2021
[6]  
Che YF, 2024, IEEE SENS J, P1, DOI [10.1109/jsen.2024.3410304, 10.1109/JSEN.2024.3410304, DOI 10.1109/JSEN.2024.3410304]
[7]   A Real-Time, Robust Visual-Inertial Navigation System Tightly Coupled With GNSS and Barometer [J].
Che, Yifan ;
Dong, Jiuxiang .
IEEE SENSORS LETTERS, 2024, 8 (06)
[8]   Assessment for INS/GNSS/Odometer/Barometer Integration in Loosely-Coupled and Tightly-Coupled Scheme in a GNSS-Degraded Environment [J].
Chiang, Kai-Wei ;
Chang, Hsiu-Wen ;
Li, Yu-Hua ;
Tsai, Guang-Je ;
Tseng, Chung-Lin ;
Tien, Yu-Chi ;
Hsu, Pei-Ching .
IEEE SENSORS JOURNAL, 2020, 20 (06) :3057-3069
[9]  
Condomines J. -P., 2019, Nonlinear Kalman Filter For Multi -Sensor Navigation of Unmanned Aerial Vehicles
[10]  
Geneva P, 2020, IEEE INT CONF ROBOT, P4666, DOI [10.1109/ICRA40945.2020.9196524, 10.1109/icra40945.2020.9196524]