Cellulose and lignin, as the most abundant biomass resources in nature, have been widely utilized in conventional industry. While their high-value potential remained underexplored for decades, recent advancements in nanotechnology and processing techniques have revealed their unique physicochemical properties, biocompatibility, and optical characteristics at the nanoscale, sparking significant interest in biomedical applications. Nanocellulose (NC), characterized by its high surface area, superior mechanical strength, and excellent biocompatibility, holds great promise in drug delivery, wound dressing, and tissue engineering. Similarly, lignin nanoparticles (LNPs) and lignin-based carbon quantum dots (L-CQDs), known for their multi-functionality, low toxicity, and outstanding fluorescence properties, emerge as sustainable alternatives for bio-imaging and bioanalytical detection. This review provides an overview of the hierarchical structure of biomass resources, details the preparation methods of cellulose- and lignin-based nanomaterials, and highlights their advancements in biomedical applications. Furthermore, it addresses the challenges and limitations associated with the clinical applications of these nanomaterials, offering insights and guidance for future research and development.