Automatic segmentation of MRI images for brain radiotherapy planning using deep ensemble learning

被引:0
作者
Yoganathan, S. A. [1 ,4 ]
Torfeh, Tarraf [1 ]
Paloor, Satheesh [1 ]
Hammoud, Rabih [1 ]
Al-Hammadi, Noora [1 ]
Zhang, Rui [2 ,3 ]
机构
[1] Hamad Med Corp, Dept Radiat Oncol, Doha, Qatar
[2] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA USA
[3] Mary Bird Perkins Canc Ctr, Dept Radiat Oncol, Baton Rouge, LA USA
[4] St Johns Hosp, Dept Radiat Oncol, Horizon Hlth Network, St John, NB, Canada
来源
BIOMEDICAL PHYSICS & ENGINEERING EXPRESS | 2025年 / 11卷 / 02期
关键词
segmentations; models; ensemble deep learning; networks; magnetic resonance imaging; weighted; TUMOR; ORGANS;
D O I
10.1088/2057-1976/ada6ba
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background and Purpose: This study aimed to develop and evaluate an efficient method to automatically segment T1- and T2-weighted brain magnetic resonance imaging (MRI) images. We specifically compared the segmentation performance of individual convolutional neural network (CNN) models against an ensemble approach to advance the accuracy of MRI-guided radiotherapy (RT) planning. Materials and Methods. The evaluation was conducted on a private clinical dataset and a publicly available dataset (HaN-Seg). Anonymized MRI data from 55 brain cancer patients, including T1-weighted, T1-weighted with contrast, and T2-weighted images, were used in the clinical dataset. We employed an EDL strategy that integrated five independently trained 2D neural networks, each tailored for precise segmentation of tumors and organs at risk (OARs) in the MRI scans. Class probabilities were obtained by averaging the final layer activations (Softmax outputs) from the five networks using a weighted-average method, which were then converted into discrete labels. Segmentation performance was evaluated using the Dice similarity coefficient (DSC) and Hausdorff distance at 95% (HD95). The EDL model was also tested on the HaN-Seg public dataset for comparison. Results. The EDL model demonstrated superior segmentation performance on both the clinical and public datasets. For the clinical dataset, the ensemble approach achieved an average DSC of 0.7 +/- 0.2 and HD95 of 4.5 +/- 2.5 mm across all segmentations, significantly outperforming individual networks which yielded DSC values <= 0.6 and HD95 values >= 14 mm. Similar improvements were observed in the HaN-Seg public dataset. Conclusions. Our study shows that the EDL model consistently outperforms individual CNN networks in both clinical and public datasets, demonstrating the potential of ensemble learning to enhance segmentation accuracy. These findings underscore the value of the EDL approach for clinical applications, particularly in MRI-guided RT planning.
引用
收藏
页数:11
相关论文
共 44 条
[1]   A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning [J].
Agn, Mikael ;
af Rosenschold, Per Munck ;
Puonti, Oula ;
Lundemann, Michael J. ;
Mancini, Laura ;
Papadaki, Anastasia ;
Thust, Steffi ;
Ashburner, John ;
Law, Ian ;
Van Leemput, Koen .
MEDICAL IMAGE ANALYSIS, 2019, 54 :220-237
[2]   General and custom deep learning autosegmentation models for organs in head and neck, abdomen, and male pelvis [J].
Amjad, Asma ;
Xu, Jiaofeng ;
Thill, Dan ;
Lawton, Colleen ;
Hall, William ;
Awan, Musaddiq J. ;
Shukla, Monica ;
Erickson, Beth A. ;
Li, X. Allen .
MEDICAL PHYSICS, 2022, 49 (03) :1686-1700
[3]   SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining [J].
Billot, Benjamin ;
Greve, Douglas N. ;
Puonti, Oula ;
Thielscher, Axel ;
Van Leemput, Koen ;
Fischl, Bruce ;
Dalca, Adrian V. ;
Iglesias, Juan Eugenio .
MEDICAL IMAGE ANALYSIS, 2023, 86
[4]   Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets [J].
Billot, Benjamin ;
Magdamo, Colin ;
Cheng, You ;
Arnold, Steven E. ;
Das, Sudeshna ;
Iglesias, Juan Eugenio .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (09)
[5]   Current concepts - Computed tomography - An increasing source of radiation exposure [J].
Brenner, David J. ;
Hall, Eric J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (22) :2277-2284
[6]   A Deep Learning Approach for Automatic Segmentation during Daily MRI-Linac Radiotherapy of Glioblastoma [J].
Breto, Adrian L. ;
Cullison, Kaylie ;
Zacharaki, Evangelia I. ;
Wallaengen, Veronica ;
Maziero, Danilo ;
Jones, Kolton ;
Valderrama, Alessandro ;
de la Fuente, Macarena I. ;
Meshman, Jessica ;
Azzam, Gregory A. ;
Ford, John C. ;
Stoyanova, Radka ;
Mellon, Eric A. .
CANCERS, 2023, 15 (21)
[7]   Advances in Auto-Segmentation [J].
Cardenas, Carlos E. ;
Yang, Jinzhong ;
Anderson, Brian M. ;
Court, Laurence E. ;
Brock, Kristy B. .
SEMINARS IN RADIATION ONCOLOGY, 2019, 29 (03) :185-197
[8]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[9]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[10]   Comprehensive deep learning-based framework for automatic organs-at-risk segmentation in head-and-neck and pelvis for MR-guided radiation therapy planning [J].
Czipczer, Vanda ;
Kolozsvari, Bernadett ;
Deak-Karancsi, Borbala ;
Capala, Marta E. ;
Pearson, Rachel A. ;
Borzasi, Emoke ;
Egyud, Zsofia ;
Gaal, Szilvia ;
Kelemen, Gyongyi ;
Koszo, Renata ;
Paczona, Viktor ;
Vegvary, Zoltan ;
Karancsi, Zsofia ;
Kekesi, Adam ;
Czunyi, Edina ;
Irmai, Blanka H. ;
Keresnyei, Nora G. ;
Nagypal, Petra ;
Czabany, Renata ;
Gyalai, Bence ;
Tass, Bulcsu P. ;
Cziria, Balazs ;
Cozzini, Cristina ;
Estkowsky, Lloyd ;
Ferenczi, Lehel ;
Fronto, Andras ;
Maxwell, Ross ;
Megyeri, Istvan ;
Mian, Michael ;
Tan, Tao ;
Wyatt, Jonathan ;
Wiesinger, Florian ;
Hideghety, Katalin ;
McCallum, Hazel ;
Petit, Steven F. ;
Rusko, Laszlo .
FRONTIERS IN PHYSICS, 2023, 11