Pointwise Sharp Moderate Deviations for a Kernel Density Estimator

被引:0
作者
Liu, Siyu [1 ]
Fan, Xiequan [1 ]
Hu, Haijuan [1 ]
Doukhan, Paul [2 ]
机构
[1] Northeastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao 066004, Peoples R China
[2] CY Univ, AGM UMR 8088, F-95000 St Martin Dheres, Cergy Pontoise, France
关键词
Cram & eacute; r moderate deviations; kernel density estimator; kernel function;
D O I
10.3390/math12203161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let fn be the non-parametric kernel density estimator based on a kernel function K and a sequence of independent and identically distributed random vectors taking values in Rd. With some mild conditions, we establish sharp moderate deviations for the kernel density estimator. This means that we provide an equivalent for the tail probabilities of this estimator.
引用
收藏
页数:9
相关论文
共 13 条
  • [1] CRAMER TYPE MODERATE DEVIATIONS FOR RANDOM FIELDS
    Beknazaryan, Aleksandr
    Sang, Hailin
    Xiao, Yimin
    [J]. JOURNAL OF APPLIED PROBABILITY, 2019, 56 (01) : 223 - 245
  • [2] Cramer Harald, 1938, Actualites Scientifiques et Industrielles, V736, P2
  • [3] de la Pea V.H., 2009, Self-Normalized Processes: Limit Theory and Statistical Applications. Probability and Its Applications (New York)
  • [4] Doukhan P., 2018, STOCHASTIC MODELS TI
  • [5] On the Nadaraya-Watson kernel regression estimator for irregularly spaced spatial data
    El Machkouri, Mohamed
    Fan, Xiequan
    Reding, Lucas
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 205 : 92 - 114
  • [6] Normalized and self-normalized Cramér-type moderate deviations for the Euler-Maruyama scheme for the SDE
    Fan, Xiequan
    Hu, Haijuan
    Xu, Lihu
    [J]. SCIENCE CHINA-MATHEMATICS, 2024, 67 (08) : 1865 - 1880
  • [7] Cramer large deviation expansions for martingales under Bernstein's condition
    Fan, Xiequan
    Grama, Ion
    Liu, Quansheng
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (11) : 3919 - 3942
  • [8] Moderate deviations and large deviations for kernel density estimators
    Gao, FQ
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2003, 16 (02) : 401 - 418
  • [9] Sharp large deviations in nonparametric estimation
    Joutard, Cyrille
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2006, 18 (03) : 293 - 306
  • [10] Petrov V.V., 1975, ERGEBNISSE MATH IHRE, DOI 10.1007/978-3-642-65809-9