EEG-CNN-Souping: Interpretable emotion recognition from EEG signals using EEG-CNN-souping model and explainable AI

被引:1
作者
Chaudary, Eamin [1 ]
Khan, Sheeraz Ahmad [1 ]
Mumtaz, Wajid [1 ]
机构
[1] Natl Univ Sci & Technol, Sch Elect Engn & Comp Sci, Elect Engn Dept, H-12, Islamabad, Pakistan
关键词
Human-robot interaction (HRI); EEG; EEG-CNN-souping; Continuous wavelet transform(CWT); Grad-cam; Interpretability; Emotion recognition;
D O I
10.1016/j.compeleceng.2025.110189
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Emotion recognition is a key aspect of human-robot interaction (HRI), which requires social intelligence to perceive and react to human affective states. This paper introduces EEG-CNN- Souping, a novel approach that applies the "Model Soups" technique to a self-designed EEG-CNN model for classifying electroencephalogram (EEG) signals into emotions. EEG-CNN-Souping improves the model performance and efficiency by averaging the weights of multiple EEG-CNN models trained on different sizes of scalograms, which are acquired by applying continuous wavelet transform (CWT) and normalization to the EEG signals. The scalograms capture the time-varying patterns of the EEG signals effectively. The approach also uses data augmentation and gradient class activation map (Grad-Cam) visualization for robustness and interpretability respectively. The model is evaluated on a common dataset that is the SEED dataset and achieves a 99.31% accuracy, surpassing other state-of-the-art deep learning (DL) models in terms of accuracy, computational cost, and time efficiency. The prediction time for EEG- CNN-Souping is only 6 ms. The explainable artificial intelligence (XAI) method Grad-CAM is utilized for interpretation of predictions. EEG-CNN-Souping is computationally inexpensive and time-efficient.
引用
收藏
页数:11
相关论文
共 38 条
[11]   EEG-based Emotion Recognition with Feature Fusion Networks [J].
Gao, Qiang ;
Yang, Yi ;
Kang, Qiaoju ;
Tian, Zekun ;
Song, Yu .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (02) :421-429
[12]   Complex networks and deep learning for EEG signal analysis [J].
Gao, Zhongke ;
Dang, Weidong ;
Wang, Xinmin ;
Hong, Xiaolin ;
Hou, Linhua ;
Ma, Kai ;
Perc, Matjaz .
COGNITIVE NEURODYNAMICS, 2021, 15 (03) :369-388
[13]   Applications of affective computing in human-robot interaction: State-of-art and challenges for manufacturing [J].
Gervasi, Riccardo ;
Barravecchia, Federico ;
Mastrogiacomo, Luca ;
Franceschini, Fiorenzo .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2023, 237 (6-7) :815-832
[14]   Intelligent Physical Robots in Health Care: Systematic Literature Review [J].
Huang, Rong ;
Li, Hongxiu ;
Suomi, Reima ;
Li, Chenglong ;
Peltoniemi, Teijo .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2023, 25
[15]   CNN and LSTM based ensemble learning for human emotion recognition using EEG recordings [J].
Iyer, Abhishek ;
Das, Srimit Sritik ;
Teotia, Reva ;
Maheshwari, Shishir ;
Sharma, Rishi Raj .
MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (04) :4883-4896
[16]   Advances and Open Problems in Federated Learning [J].
Kairouz, Peter ;
McMahan, H. Brendan ;
Avent, Brendan ;
Bellet, Aurelien ;
Bennis, Mehdi ;
Bhagoji, Arjun Nitin ;
Bonawitz, Kallista ;
Charles, Zachary ;
Cormode, Graham ;
Cummings, Rachel ;
D'Oliveira, Rafael G. L. ;
Eichner, Hubert ;
El Rouayheb, Salim ;
Evans, David ;
Gardner, Josh ;
Garrett, Zachary ;
Gascon, Adria ;
Ghazi, Badih ;
Gibbons, Phillip B. ;
Gruteser, Marco ;
Harchaoui, Zaid ;
He, Chaoyang ;
He, Lie ;
Huo, Zhouyuan ;
Hutchinson, Ben ;
Hsu, Justin ;
Jaggi, Martin ;
Javidi, Tara ;
Joshi, Gauri ;
Khodak, Mikhail ;
Konecny, Jakub ;
Korolova, Aleksandra ;
Koushanfar, Farinaz ;
Koyejo, Sanmi ;
Lepoint, Tancrede ;
Liu, Yang ;
Mittal, Prateek ;
Mohri, Mehryar ;
Nock, Richard ;
Ozgur, Ayfer ;
Pagh, Rasmus ;
Qi, Hang ;
Ramage, Daniel ;
Raskar, Ramesh ;
Raykova, Mariana ;
Song, Dawn ;
Song, Weikang ;
Stich, Sebastian U. ;
Sun, Ziteng ;
Suresh, Ananda Theertha .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 14 (1-2) :1-210
[17]   EEG-ConvNet: Convolutional networks for EEG-based subject-dependent emotion recognition [J].
Khan, Sheeraz Ahmad ;
Chaudary, Eamin ;
Mumtaz, Wajid .
COMPUTERS & ELECTRICAL ENGINEERING, 2024, 116
[18]   Trust in automation: Designing for appropriate reliance [J].
Lee, JD ;
See, KA .
HUMAN FACTORS, 2004, 46 (01) :50-80
[19]   STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition [J].
Li, Jingcong ;
Pan, Weijian ;
Huang, Haiyun ;
Pan, Jiahui ;
Wang, Fei .
FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
[20]   A novel ensemble learning method using multiple objective particle swarm optimization for subject-independent EEG-based emotion recognition [J].
Li, Rui ;
Ren, Chao ;
Zhang, Xiaowei ;
Hu, Bin .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140