Efficiency analysis of binary metaheuristic optimization algorithms for uncapacitated facility location problems

被引:0
作者
Sag, Tahir [1 ]
Ihsan, Aysegul [2 ]
机构
[1] Selcuk Univ, Dept Comp Engn, TR-42075 Konya, Turkiye
[2] Selcuk Univ, Dept Informat Technol Engn, TR-42075 Konya, Turkiye
关键词
Aquila optimizer; Binary optimization; Coati optimization; Dynamic hunting leadership optimization; Mexican axolotl optimization; PARTICLE SWARM OPTIMIZATION;
D O I
10.1016/j.asoc.2025.112968
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces binary adaptations of four metaheuristic optimization algorithms: the Binary Coati Optimization Algorithm (BCOA), Binary Mexican Axolotl Optimization Algorithm (BMAO), Binary Dynamic Hunting Leadership Optimization (BDHL), and Binary Aquila Optimizer (BAO). These algorithms were evaluated for their effectiveness in solving Uncapacitated Facility Location (UFL) problems, which aim to minimize total costs associated with customer-facility allocations and facility opening expenses by determining the optimal number of open facilities. Using 15 UFL problem instances from the OR-Lib dataset, the study assessed algorithm performance across 17 transfer functions (TFs), including S-shaped, V-shaped, and other variants, to address the binary nature of these problems. Performance metrics such as the best, worst, average, standard deviation, and GAP values were analyzed for each binary algorithm. Additionally, statistical analyses were conducted to further assess algorithmic performance. The Kolmogorov-Smirnov (KS) normality test was applied to determine the distribution characteristics of the results, followed by either ANOVA or Kruskal-Wallis tests, depending on the normality of the distributions. These statistical tests revealed significant differences in algorithm performance across different problem instances. Rank values were calculated based on GAP values and CPU times to facilitate comparisons across algorithm versions for the 15 UFL problems. Results underscored the critical role of TF selection in optimizing algorithm efficiency: BCOA performed best with TF11, BMAO with TF16 and TF17, BAO with TF10, and BDHL with TF15. Finally, a performance comparison on GAP values was conducted with two state-of-the-art PSO variants adapted for binary optimization. The proposed algorithms demonstrated either superior or competitive performance in solving UFL problems, validating their efficacy in complex optimization tasks and highlighting the influence of TFs on their performance.
引用
收藏
页数:51
相关论文
共 65 条
  • [1] Aquila Optimizer: A novel meta-heuristic optimization algorithm
    Abualigah, Laith
    Yousri, Dalia
    Abd Elaziz, Mohamed
    Ewees, Ahmed A.
    Al-qaness, Mohammed A. A.
    Gandomi, Amir H.
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 157 (157)
  • [2] The Arithmetic Optimization Algorithm
    Abualigah, Laith
    Diabat, Ali
    Mirjalili, Seyedali
    Elaziz, Mohamed Abd
    Gandomi, Amir H.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 376
  • [3] Greater cane rat algorithm (GCRA): A nature-inspired metaheuristic for optimization problems
    Agushaka, Jeffrey O.
    Ezugwu, Absalom E.
    Saha, Apu K.
    Pal, Jayanta
    Abualigah, Laith
    Mirjalili, Seyedali
    [J]. HELIYON, 2024, 10 (11)
  • [4] Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer
    Agushaka, Jeffrey O.
    Ezugwu, Absalom E.
    Abualigah, Laith
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (05) : 4099 - 4131
  • [5] Dwarf Mongoose Optimization Algorithm
    Agushaka, Jeffrey O.
    Ezugwu, Absalom E.
    Abualigah, Laith
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 391
  • [6] Dynamic Hunting Leadership optimization: Algorithm and applications
    Ahmadi, Bahman
    Giraldo, Juan S.
    Hoogsteen, Gerwin
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 69
  • [7] BinBRO: Binary Battle Royale Optimizer algorithm
    Akan , Taymaz
    Agahian, Saeid
    Dehkharghani, Rahim
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 195
  • [8] Binary Ebola Optimization Search Algorithm for Feature Selection and Classification Problems
    Akinola, Olatunji
    Oyelade, Olaide N.
    Ezugwu, Absalom E.
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [9] A hybrid binary dwarf mongoose optimization algorithm with simulated annealing for feature selection on high dimensional multi-class datasets
    Akinola, Olatunji A.
    Ezugwu, Absalom E.
    Oyelade, Olaide N.
    Agushaka, Jeffrey O.
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] Pufferfish Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
    Al-Baik, Osama
    Alomari, Saleh
    Alssayed, Omar
    Gochhait, Saikat
    Leonova, Irina
    Dutta, Uma
    Malik, Om Parkash
    Montazeri, Zeinab
    Dehghani, Mohammad
    [J]. BIOMIMETICS, 2024, 9 (02)