Blocking sets of secant and tangent lines with respect to a quadric of PG(n, q)

被引:0
作者
De Bruyn, Bart [1 ]
Pradhan, Puspendu [2 ,3 ]
Sahoo, Binod Kumar [4 ]
机构
[1] Dept Math Comp Sci & Stat, Krijgslaan 281 S9, B-9000 Ghent, Belgium
[2] Indian Inst Sci Educ & Res Pune, Dept Math, Dr Homi Bhabha Rd, Pune 411008, India
[3] Indian Inst Technol, Dept Math, Mumbai 400076, India
[4] Natl Inst Sci Educ & Res Bhubaneswar, Sch Math Sci, Jatni 752050, Odisha, India
基金
新加坡国家研究基金会;
关键词
Projective space; Blocking set; Conic; Quadric; Cone; Secant line; Tangent line; EXTERNAL LINES; PG(3; Q); PG(2;
D O I
10.1007/s10623-024-01559-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For a set L of lines of PG(n, q), a set X of points of PG(n, q) is called an L-blocking set if each line of L contains at least one point of X. Consider a possibly singular quadric Q of PG(n, q) and denote by S (respectively, T) the set of all lines of PG(n, q) meeting Q in 2 (respectively, 1 or q + 1) points. For L is an element of{S, T. S}, we find the minimal cardinality of an L-blocking set of PG(n, q) and determine all L-blocking sets of that minimal cardinality.
引用
收藏
页数:22
相关论文
共 25 条